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Abstract

Background: It is generally recognized that recurrent aggression can be the result of various psychiatric disorders. The aim
of our study was to analyze the mRNA levels, in the ventral tegmental area (VTA) of the midbrain, of the genes that may
possibly be associated with aggression consistently shown by male mice in special experimental settings.

Methodology/Principal Findings: The genes were Th, Dat1, Snca and Bdnf; the male mice were a group of animals that had
each won 20 daily encounters in succession and a group of animals that had the same winning track record followed by a
no-fight period for 14 days. Increased Th, Dat1 and Snca mRNA levels were in the fresh-from-the-fight group as compared to
the controls. Increased Th and Dat1 mRNA levels were in the no-fight winners as compared to the controls. Significant
positive correlations were found between the level of aggression and Th and Snca mRNA levels.

Conclusions: Repeated positive fighting experience enhances the expression of the Th, Dat1 and Snca genes, which are
associated with brain dopaminergic systems. The expression of the Th and Dat1 genes stays enhanced for a long time.
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Introduction

It is generally recognized that recurrent aggression can be the

result of various psychiatric disorders such as manic-depressive

disorder, compulsive-obsessive disorder, epilepsy, posttraumatic

stress, autism, Alzheimer’s disease, attention deficit/hyperactivity

disorder, mental retardation, schizophrenia, drug abuse etc [1].

According to many authors [2–6], aggression is rewarding for both

laboratory rodents and humans and any positive reinforcement

increases the propensity to behave aggressively. Rats and mice

with the prior experience of social victories attack more frequently

[6–11]. Mice with repeated positive fighting experience can

develop violent behavior patterns [4,12]. The same refers to

humans: the individuals who have once displayed aggressive

behavior tend to do so again [5].

It has been experimentally demonstrated that repeated

aggression displayed by male mice leads the activation of brain

dopaminergic systems. This activation was detected as elevated

DOPAC (3,4-dihydroxyphenylacetic acid) levels or/and increased

DOPAC/DA (dopamine) ratios in the olfactory bulbs, amygdala,

hippocampus, nucleus accumbens, striatum and midbrain ob-

served in the winners as compared to the controls [13,14].

Reportedly, the dopaminergic systems can be activated in

aggressive rats, as DA levels were elevated in the prefrontal cortex

during and after fights [15]. A number of papers confirms the

involvement of brain dopaminergic systems in the control of

aggressive behavior [16].

The aim of our study was to analyze the mRNA levels of the

Th, Dat1, Snca and Bdnf genes. These genes were chosen because

of the role their products (proteins) have in the brain

dopaminergic regulation: tyrosine hydroxylase (TH), which is

the rate-limiting enzyme of DA synthesis; the dopamine

transporter (DAT), which terminates the DA action on the

postsynaptic membrane by rapidly removing it from the

synaptic cleft via reuptake [17–19]; alpha-synuclein (SNCA),

which plays a role in dopamine compartmentalization in the

pre-synaptic terminals [20–21], vesicular dopamine storage,

vesicular dopamine release into synapses, and dopamine re-

uptake into the dopaminergic neurons [22]; the brain-derived

neurotrophic factor (BDNF), which is associated with many

diseases [23,24]. We focused on the ventral tegmental area

(VTA) of the midbrain containing the cell bodies of mesolimbic

dopaminergic neurons, because mesolimbic dopaminergic

projections from the VTA play an important role in the

mediation of rewarding processes and are associated with many

types of social behavior [25,26].
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The mRNA levels were analyzed in male mice that had a long

positive fighting history (20 wins in daily agonistic interactions) and

developed behavioral psychopathology, which included the

demonstration of abnormal aggression, malignancy, strong

hostility, pronounced anxiety, disturbances in social recognition,

hyperactivity, stereotypic and hyperkinetic reactions etc [4]. The

expression of these genes was also analyzed in a group of 20-time

winners who afterwards had not been allowed to fight for 14 days

referred to as ‘‘the period of aggression deprivation’’ or ‘‘the

period of deprivation’’ throughout; such animals are special in that

they are even more aggressive after than before this no-fight period

[4]. The comparison of the levels of expression of these genes in

the fight-deprived and fight-undeprived winners helps answer the

question as to whether the levels of gene expression in the VTA of

the ‘‘deprived’’ winners recovers to that in the controls.

Materials and Methods

Animals
Adult male mice of the C57BL/6J strain from a stock

maintained in the Animal Facility of the Institute of Cytology

and Genetics, SD RAS, (Novosibirsk, Russia) were used. The

animals were housed under standard conditions (12:12 h light/

dark regime, switch-on at 8.00 a.m.; food (pellets) and water

available ad libitum). Mice were weaned at one month of age and

housed in groups of 8–10 in plastic cages (36623612 cm).

Experiments were performed on mice 10–12 weeks of age. All

procedures were in compliance with the European Communities

Council Directive of November 24, 1986 (86/609/EEC).

Winners
Aggressive behavior was induced using the sensory contact

model [27]. Pairs of weight-matched animals were each placed in

a steel cage (28614610 cm) bisected by a perforated transparent

partition allowing the animals to see, hear and smell each other,

but preventing physical contact. The animals were left undisturbed

for two or three days to adapt to new housing conditions and

sensory contact before they were exposed to encounters. In the

second half of the light period, the lid was replaced by a

transparent one and five minutes later the partition was removed

for 10 minutes to encourage agonistic interactions. The superiority

of one of the mice was firmly established within two or three

encounters with the same opponent. The superior mouse would be

attacking, biting and chasing another, who would be displaying

only defensive behavior (sideways postures, upright postures,

withdrawal, lying on the back or freezing). The duration of each

fight was kept to three minutes, at which point the partition was

pulled down. Each defeated mouse (loser) was exposed to the same

winner for three days, while afterwards each loser was placed, once

a day after the fight, in an unfamiliar cage with an unfamiliar

winner behind the partition. Each victorious mouse (winner)

remained in its original cage. This procedure was performed once

a day for 20 days and yielded an equal number of winners and

losers. The controls were animals that had been housed

individually for five days. The rationale for this choice is that it

gives the best trade-off between group housing and social isolation:

five days is sufficient for group housing to no longer be a factor

and insufficient for social isolation to become a factor [27].

The design of the current experiment is presented in Figure 1.

Three groups of animals were used. (1) Fight-undeprived winners:

a group of mice that had each won 20 encounters in succession. (2)

Fight-deprived winners: a group of 20-time winners who were

allowed to live for 14 days after the last encounter. During this

period, each of them shared a cage with a loser; the partition

between their compartments being down at all times, to prevent

encounters. (3). Controls: the mice that had been housed

individually for five days before they were killed for scientific

purposes. Each experimental group contained 7–11 animals.

Behavioral study
Each winner was video recorded for 10 min during its last

encounter (Figure 1) and the data were documented. Furthermore,

we needed to know whether both groups of winners could be

considered identical at the time each mouse won its last encounter.

If they were, all the differences in gene expression between fight-

deprived and fight-undeprived winners, or lack thereof, could

solely be accounted for by deprivation. To find out, the groups

were compared in terms of behavior.

The following were the behavioral domains analyzed. 1.

Attacking. Attacking, biting and chasing. 2. Aggressive grooming. The

winner mounts onto the loser’s back, holds it down and spends

much time licking and nibbling at the loser’s scruff of the neck.

The loser is wholly immobilized – or sometimes stretches out the

neck and again freezes under the winner. 3. Digging. Digging up

and scattering the sawdust on the loser’s territory (kick-digs:

pulling the sawdust forwards with the forepaws; push-digs: pushing

the sawdust backwards with the hind paws). 4. Self-grooming. Body

care activities (fur licking, head washing, nose washing).

Figure 1. Protocol of the experiment. Detailed explanations are given in the text. Behavior in ‘‘undeprived’’ and ‘‘deprived’’ winners as recorded
during their respective last encounter.
doi:10.1371/journal.pone.0004190.g001

Genes and Aggression

PLoS ONE | www.plosone.org 2 January 2009 | Volume 4 | Issue 1 | e4190



The following were the behaviors measured. a. Latency to

attacking; b. Total time spent on any of the four above listed

activities; c. Number of events falling under any of the four above

listed domains. If an animal did not attack or aggressively groom

during the session, the latency to these events was assigned a

duration of 600 s, which is how long the session lasted, and the

other measures were assigned a value of zero. The total time spent

attacking, aggressively grooming and digging was counted as a

measure of hostile behavior.

All the mice were decapitated simultaneously (Figure 1). An

important point is that the ‘‘undeprived’’ winners were decapitated

24 hours after the last encounter. Brains were removed and chilled

rapidly on ice. The VTA was dissected according to the Mouse

Brain Atlas [28] and sections were collected from 1.68 mm to

22.12 mm relative to bregma. Obtained tissue was rapidly frozen

in liquid nitrogen and stored at 270uC until used.

Total RNA extraction and reverse transcription
Total RNA was extracted from each individual brain tissue

sample using the Chomczynski and Sacchi method [29] with

modifications. Total RNA was quantified by measuring the

absorbance at 260 nm. The integrity of total RNA was assessed

by agarose gel electrophoresis. 1 mg of total RNA was used for

cDNA synthesis by MoMLV reverse transcriptase (Biosan,

Novosibirsk, Russia).

Real-time quantitative PCR
Amplification was performed using an iQ5 iCycler (Bio-Rad,

Hercules, CA, USA). Th, Dat1, Bdnf, b-actin (Actb), and cyclophilin

(Cphn) mRNA levels were quantified by TaqMan real-time PCR.

PCR was performed in a total volume of 25 ml containing an

aliquot of the RT mixture, dNTPs, the appropriate concentrations

of sense and anti-sense primers, a TaqMan probe, PCR buffer,

and hot-start Taq DNA polymerase (Biosan, Novosibirsk, Russia).

Amplification was run for 2 min at 96uC, followed by 37 cycles of

15 s at 96uC, 45 s at 61uC. Fluorescence was monitored for 10 s

after the last cycle.

Snca mRNA levels were quantified by SybrGreenI real-time

PCR in a total volume of 25 ml containing an aliquot of the RT

mixture, dNTPs, the appropriate concentrations of the sense and

anti-sense primers, Sybr Green I (Invitrogen), PCR buffer, and

hot-start Taq DNA polymerase. Amplification was run for 3 min

at 95uC, followed by 40 cycles of 10 s at 92uC, 6 s at 60uC, 6 s at

72uC and 10 s at 85uC. Fluorescence was monitored for 10 s after

the last cycle. To check for the presence of non-specific PCR

products or primer-dimers, a melting curve analysis was

performed after the final PCR cycle.

Amplification efficiencies were calculated a relative standard

curve derived from fourfold serial dilutions of pooled cDNA. In all

cases, the amplification efficiency was higher than 85%. Each

sample was PCR-amplified twice. RT-PCR results were quantified

using the relative standard curve method. The level of expression

of each gene was normalized to the mean level of expression of the

Actb and Cphn genes.

The oligonucleotide primers and probes were designed using

Beacon Designer 5.0 (PREMIER Biosoft International, USA). The

PCR primer and probe sequences are shown in Table 1.

Statistics
Statistical analysis was performed using the Kruskal-Wallis one-

way analysis of variance (ANOVA) with factor groups. A post-hoc

pair-wise comparison of the groups was made with the Mann-

Whitney test (U test). Correlations were assessed using Spearman’s

rank correlation coefficient. We searched for correlations between

the Th, Dat1, Bdnf, and Snca mRNA levels in each experimental

group separately and in combination; each Th, Dat1, Bdnf, Snca

mRNA level and each behavior (latency to first attack, the number

of attacks, the total amount of time spent attacking) in the

‘‘undeprived’’ winners; post-deprivation Th, Dat1, Bdnf, and Snca

mRNA levels and pre-deprivation behavioral parameters in the

‘‘deprived’’ winners. The statistical significance was set at P#0.05;

the tendency level was set at 0.05,P,0.1.

Results

No differences were found between the ‘‘undeprived’’ and the

‘‘deprived’’ group in any of the individual or social behaviors

measured after the respective 20-day periods of agonistic

interactions (P.0.05, Table 2). Therefore, behaviorally, both

groups could be considered identical.

Kruskal-Wallis analysis revealed a significant influence of the

factor groups on the mRNA level of Th [H(2,24) = 7.11, P,0.029]

and Dat1 [H(2,25) = 6.45, P,0.040]. The influence of the factor

groups on the mRNA level of the Snca gene was not definitely

significant, but strongly suggestive [H(2,26) = 5.80, P,0.055].

There was no significant influence of the factor groups on the

expression of the Bdnf gene [H(2,24) = 0.16, NS].

Based on the Mann-Whitney test (Figure 2), the ‘‘undeprived’’

winners had increased mRNA levels of Th (U = 10; P,0.021),

Dat1 (U = 13; P,0.031) and Snca (U = 16; P,0.028) as compared

to the respective levels in the controls; the ‘‘deprived’’ winners had

increased mRNA levels of Th (U = 5; P,0.022) and Dat1 (U = 5;

P,0.022) as compared to the respective levels in the controls;

there was no difference between the ‘‘undeprived’’ and the

‘‘deprived’’ group in the mRNA level of Th (U = 29; NS) or Dat1

(U = 32; NS).

Based on Spearman’s rank correlation coefficient, there were

significant positive correlations between the mRNA levels of the

following genes: Th and Dat1 (R = 0.943, P,0.005), Bdnf and Snca

(R = 0.893, P,0.007) in the controls; Th and Dat1 (R = 0.891,

P,0.001), Dat1 and Snca (R = 0.636, P,0.026) in the ‘‘unde-

Table 1. Primer and probe sequences.

Genes Primer and probe sequences

Bdnf sense 59-ACTATGGTTATTTCATACTTCGGTT-39

anti-sense 59-CCATTCACGCTCTCCAGA-39

probe 59-FAM-CGTCCACGGACAAGGCAACTT-BHQ1-39

Dat1 sense 59- GTGTCCAGCAATTCAGTGAT-39

anti-sense 59-TGACCACGACCACATACAGA-39

probe 59- FAM-CCAGCATAGCCGCCAGTACAGG-BHQ1-39

Th sense 59-TTGGATAAGTGTCACCACCTG-39

anti-sense 59-TGGCTCACCCTGCTTGTA-39

probe 59-R6G-TGACCCTGACCTGGACCTGGAC-BHQ1-39

Snca sense 59-TGACAGCAGTCGCTCAGA-39

anti-sense 59-CATGTCTTCCAGGATTCCTTC-39

Cphn sense 59-GAGAACTTCATCCTAAAGCATACAG-39

anti-sense 59-TCACCTTCCCAAAGACCA-39

probe 59- TAMRA -CGTTGCCATCCAGCCATTCAG-BHQ2-39

Actb sense 59- TCTTTGCAGCTCCTTCGTT -39

anti-sense 59-CGATGGAGGGGAATACAG-39

probe 59- ROX-CACACCCGCCACCAGTTCGC-BHQ2-39

doi:10.1371/journal.pone.0004190.t001
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prived’’ winners; Th and Dat1 (R = 0.857, P,0.014) in the

‘‘deprived’’ winners; Th and Dat1 (R = 0.940, P,0.001), Dat1

and Snca (R = 0.456, P,0.022), Snca and Bdnf (R = 0.479,

P,0.018) using pooled data from all the groups (Figure 3).

Significant positive correlations were found between the Th

mRNA level and the number of attacks (R = 0.607, P,0.047), the

Th mRNA level and the total time spent attacking (R = 0.655,

P,0.029) and the Snca mRNA level and the number of attacks

Table 2. Behavioral data from winners in the ‘‘undeprived’’ and the ‘‘deprived’’ group during their respective last encounter.

Behavioral parameters ‘‘Undeprived’’ winners ‘‘Deprived’’ winners Mann-Whitney test

Attacks Latency, s 41.7615.0 68.9639.5 U = 27.0; NS

Number 15.363.1 12.062.8 U = 34.5; NS

Total time, s 81.4620.8 53.4612.2 U = 29.0; NS

Aggressive grooming Number 0.260.2 0.960.9 U = 36.0; NS

Total time, s 3.263.2 9.469.4 U = 36.0; NS

Diggings Number 10.261.7 9.961.2 U = 38.0; NS

Total time, s 37.967.9 43.663.0 U = 28.0; NS

Total time of hostile behavior 122.5618.2 106.4610.9 U = 33.0; NS

Self-grooming Number 4.561.1 7.161.8 U = 26.5; NS

Total time, s 10.262.1 13.363.5 U = 33.0; NS

Number of animals 11 7

doi:10.1371/journal.pone.0004190.t002

Figure 2. The normalized Th, Dat1, Snca and Bdnf mRNA levels in the VTA of the controls, ‘‘undeprived’’ and ‘‘deprived’’ winners. * -
P,0.05 vs the controls (Mann-Whitney test).
doi:10.1371/journal.pone.0004190.g002
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(R = 0.699, P,0.017) in the ‘‘undeprived’’ winners; the Snca

mRNA level and the total time spent attacking (R = 0.821,

P,0.023), a negative correlation was found between the Snca

mRNA level and the latency to first attack (R = 20.964, P,0.001)

in the ‘‘deprived’’ winners (Figure 4). Other correlations failed to

reach significance.

Discussion

This experiment demonstrated an increase of the Th and Dat1

mRNA levels in the VTA of C57BL/6J mice, each of whom won 20

encounters in succession (similar results had previously been

obtained from CBA/Lac mice, each of whom won 10 encounters

in succession [30]). Thus, a chronic manifestation of aggression,

which is accompanied by the activation of the brain dopaminergic

systems [13,14], enhances the expression of the Th and Dat1 genes,

whose products are responsible for the synthesis and inactivation of

DA, respectively. The increase of Snca expression, even though

suggestive, may represent a feedback mechanism of DA re-uptake

inhibition, which provides increased DA levels in the synaptic cleft

under the influence of repeated aggression. No change in Bdnf

expression was revealed in the winners. However, the expression of

some genes may increase rapidly and decrease abruptly, while that

of other genes changes more gradually [31]. As Miczek and the co-

workers report [32], continuous subordination stress leads to

significantly decreased levels of BDNF protein in the VTA

compared to control levels, whereas intermittent social defeat stress

episodes result in increased BDNF protein levels. Thus, the lack of

changes in Bdnf mRNA levels in the winners could be explained by

transient (dynamic) changes of gene expression shown, for example,

for the genes of kappa-opioid receptors [33,34], mu-opioid

receptors [35,36], and proenkephalin [37] in some brain areas in

response to exposure to the experimental settings. If this explanation

is correct, we cannot completely exclude the involvement of Bdnf in

the mechanisms underlying repeated aggression. This expectation is

supported by the presence of a positive functional correlation

between the Bdnf and Snca mRNA levels.

In the ‘‘deprived’’ winners, Th and Dat1 expression was still

enhanced: the respective mRNA levels differed significantly from

those in the control mice and did not from those in the

‘‘undeprived’’ winners. On the one hand, it is possible that living

close to a male behind the perforated transparent partition alerts

the winner and makes it more aggressive even in the no-fighting

settings. Another interpretation could be that once the level of

expression of these genes was enhanced due to repeated

aggression, there might be molecular mechanisms in place to

keep these levels enhanced, no matter which settings. The fact that

the ‘‘deprived’’ winners are more aggressive than the ‘‘unde-

prived’’ winners [4] is, if nothing else, amusing. It is possible that

the reason for enhanced aggression is the accumulation of DA due

to an enhanced level of expression of the Th gene, which codes for

TH, the key enzyme in DA synthesis. The Snca mRNA level in the

‘‘deprived’’ winners did not differ from that in the controls.

Significant positive correlations were found between Th and

Dat1 mRNA levels in the VTA within each of the experimental

groups (the controls, the ‘‘undeprived’’ winners and the ‘‘de-

Figure 3. Significant correlations between the mRNA levels of the Th, Dat1, Snca and Bdnf genes in the VTA of the control, the
‘‘undeprived’’ and the ‘‘deprived’’ winners and all groups in combinations. Positive correlations: * - P,0.05; ** - P,0.01; *** - P,0.001;
Spearman’s rank correlation coefficient.
doi:10.1371/journal.pone.0004190.g003

Figure 4. Significant correlations between the mRNA levels of the Th, Dat1, and Snca genes in the VTA of the ‘‘undeprived’’ and the
‘‘deprived’’ winners and the parameters of aggressive behavior during the 20st confrontation. Solid lines – positive correlation; dotted
line – negative correlations, P,0.05, Spearman’s rank correlation coefficient.
doi:10.1371/journal.pone.0004190.g004
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prived’’ winners), which suggests a close relationship between

dopamine synthesis and inactivation, possibly as a result of

overlapping of Th and Dat1 mRNA-positive dopaminergic neurons

[17]. The fact itself that there are positive correlations between Th

and Dat1 mRNA levels in the VTA is not surprising, because it is

obvious that the products of these genes (TH and DAT proteins)

are involved in dopaminergic mediation in brain. It is well known

that the neurochemical regulation of neurotransmitters metabo-

lism includes feedback mechanisms. Our data provide evidence

that the Th and Dat1 are part of these mechanisms. The reason for

this correlative relationship might be the common molecular

mechanisms of transcriptional regulation of these genes. For

example, Nurr1 increases the transcriptional activity of both Th

and Dat1 promoters [38,39]. A significant positive correlation

between mRNA levels of the Snca and Bdnf genes was found in the

control animals. It is possible that, in intact animals, the

transcription factors that regulate the Th and Dat1 genes are

other than those that regulate the Snca and Bdnf genes. A positive

correlation between mRNA levels of the Dat1 and Snca genes was

found in the ‘‘undeprived’’, but not in the ‘‘deprived’’ winners.

The Snca mRNA level in the ‘‘deprived’’ winners showed a

tendency to recover to the control level.

Pooled data from all the experimental groups (the controls, the

‘‘undeprived’’ winners, the ‘‘deprived’’ winners) revealed an

association of mRNA levels in the following succession: Th----

Dat1---Snca----Bdnf. However, the intrinsic molecular mechanisms

responsible for the functional association that exists between the

experience of behaving aggressively, Th, Dat1, Snca and Bdnf

expression and the implications of neurochemical events unfolding

in the winners’ brains have yet to be revealed.

Thus, a chronic manifestation of aggression, which leads to the

activation of the brain dopaminergic systems, enhances the

expression of the Th and Dat1 genes, whose proteins are

responsible for the synthesis and inactivation of DA, respectively.

Mesolimbic dopaminergic projections from the VTA play an

important role in the mediation of rewarding processes [reviews

25,26,40]. It is therefore possible that the observed changes of

gene expression in the winners’ VTA result from experiencing

positive emotions over social victories [4]. Because consistent

defeat leads to the activation of the serotonergic system and

negative emotions [41], the lack of significant changes in Th and

Dat1 expression in the losers’ VTA demonstrated previously [30]

lends support to this possibility.

Interestingly, the winners’ level of aggression measured as the

latency to first attack, the number of attacks and the total time

spent attacking is correlated with the Th and Snca mRNA levels in

the VTA. It is therefore possible that the higher the level of

aggression they display during encounters, the higher the level of

Th and Snca gene expression in their brain.

The data obtained so far strongly support the statement that the

Th, Dat1 and Snca genes in the VTA are involved in the

mechanisms of repeated aggression. It is most likely that these

genes have a role in rewarding processes, which can directly

underlie the motivation to behave aggressively again. However,

these data cannot help answer the question as to whether an

increase in the expression of these genes in the VTA is specific for

aggressive behavior pathology developed due to repeated

aggression and demonstrated in our behavioral experiments.

Other neurotransmitter systems, too, may be factors; for example,

the opioidergic or serotonergic systems, which were found altered

in 20-time winners [4].

There is ample experimental evidence supporting the hypothesis

that there are many genes that can change their functional state

due to agonistic interactions [23,33,42–52]. Repeated exposure to

social confrontations and social stress has been shown to be able to

develop pathological states (depression, anxiety, abnormal aggres-

sion) in animals [4,23,41]. It is gradually becoming clear that the

development of psychoemotional disorders leads to changes in the

transcriptional state of a set of genes, which makes it possible to

track changes in gene functioning and to look for possibilities of

their pharmacological correction. If this is as it seems to be, we

should think of a new-generation therapy that should prevent gene

expression from being affected by psychopathogenic factors.
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