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Zebrafish (Danio rerio) are becoming increasingly popular in neurobehavioral research. Here, we summarize
recent data on behavioral responses of adult zebrafish to a wide spectrum of putative anxiolytic and
anxiogenic agents. Using the novel tank test as a sensitive and efficient behavioral assay, zebrafish anxiety-like
behavior can be bi-directionally modulated by drugs affecting the gamma-aminobutyric acid, monoaminergic,
cholinergic, glutamatergic and opioidergic systems. Complementing human and rodent data, zebrafish drug-
evoked phenotypes obtained in this test support this species as a useful model for neurobehavioral and
psychopharmacological research.
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1. Introduction

Anxiety is a common neurobehavioral disorder with multiple
genetic and environmental determinants (Bishop, 2007; Landgraf and
Wigger, 2002; Olivier et al., 1998; Suveg et al., 2010). Experimental
animal models of anxiety have been successfully used in rodents, based
on their behavioral responses to novelty (Belzung and Agmo, 1997b;
Kurt et al., 2000; Ribeiro and De Lima, 1998). Similar novelty-based
paradigms have recently been developed for zebrafish (Danio rerio)
(Blaser et al., 2010; Cachat et al., 2010b; Champagne et al., 2010; Gerlai,
2009; Maximino et al., 2010c; Stewart et al., 2010c) to assess their
behavioral phenotypes (Canavello et al., 2010; Egan et al., 2009, Gerlai,
2005; Stewart et al., 2010b).

Novelty is thought to be the key anxiogenic factor in rodent
exploration-based paradigms (File, 2001; Kim et al., 2005; Powell
et al., 2004). Since it appears to play a similar role in zebrafish tests
(Cachat et al., 2010b; Egan et al., 2009), this paper will limit its focus to
novelty-evoked anxiety-like phenotypes. However, other factors (such
as predator avoidance/escape (Gallup and Suarez, 1980; Suarez and
Gallup, 1982a,b), defense behavior (Blanchard et al., 1991, 1998b, 1999;
Griebel et al., 1995), risk assessment (Martin and Réale, 2008; Ohl et al.,
2001) or the conflict between themotivations to explore and avoid (File,
2001; McNaughton and Corr, 2004; Montgomery, 1955; Montgomery
andMonkman, 1955)) contribute to animals' behavioral responses, and
merit further scrutiny in zebrafish models.

Mounting evidence demonstrates the sensitivity of zebrafish
behavior to pharmacological manipulations, including anxiolytic and
anxiogenic drugs (Table 1) or withdrawal from cocaine (Lopez-Patino
et al., 2008; Lopez Patino et al., 2008), ethanol (Lack et al., 2007),
morphine, diazepam (Wong et al., 2010a) and chlordiazepoxide
(Stewart et al., 2011). To demonstrate the utility of zebrafish models
for anxiety research, we will evaluate their responses to a wide
spectrum of psychotropic drugs, paralleling these findings with
rodent and human evidence.

Importantly, both larval and adult models are widely used in
psychopharmacological screening in zebrafish (Chakraborty et al.,
2009; Darland and Dowling, 2001; Gerlai et al., 2006; Linker et al.,
2010; Rihel et al., 2010; Rubinstein, 2006). The strength of larvalmodels
is in their high-throughput nature, ease of genetic manipulations, and
simple, well-defined behavioral endpoints (Best and Alderton, 2008;
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Table 1
Summary of published data on pharmacological manipulations of anxiety-like behavior in adult zebrafish.

Drugs Effective doses and treatment details Behavioral test
(zebrafish strain)

Behavioral effects References

Anxiolytic compounds
Gamma-aminobutyric acid (GABA)-ergic drugs

Ethanol 0.5 and 1% immersed for 60 min Predator exposure
(wild type)

Acute: lower avoidance Gerlai et al. (2006)

0.25, 0.5 and 1% immersed for 120min
(acute) or 1–2 weeks (chronic)

Open field (wild type) Acute: reduced startle and shoaling;
chronic: reduced
shoaling (0.5%)

(Dlugos and Rabin, 2003)

0.2–0.3% immersed for 5 min (acute)
or 1–2 weeks (chronic)

Novel tank (wild
type)

Acute and chronic: shorter latency to
top, more top entries and time spent

(Egan et al., 2009; Wong et al., 2010a; Stewart
et al., 2011) (Wong et al., 2010a)

0.5% immersed for 3–4 min Light–dark plus maze
(AB, WIK, GloFish)

More total arm entries and time spent
in white arm

Sackerman et al. (2010)

Chlordiazepoxide 5, 10 and 20 mg/L immersed for 3 min Novel tank (wild
type)

Sedation and slower swimming Bencan et al. (2009)

25 mg/L immersed for 3–4 min Light–dark plus maze
(AB, WIK, GloFish)

More white arm entries and time spent Sackerman et al. (2010)

Diazepam 1.5 and 5 mg/L immersed for 3 min Novel tank (wild
type)

Reduced bottom dwelling Bencan et al. (2009)

Serotonergic drugs
Buspirone 6.25 and 50 mg/L immersed for 3 min Novel tank (wild

type)
Reduced diving and bottom dwelling Bencan et al. (2009)

Citalopram 100 mg/L immersed in water for
3–4 min

Novel tank (AB, WIK,
GloFish)

More time in top Sackerman et al. (2010)

Desipramine 25 mg/L immersed for 3–4 min Novel tank (AB, WIK,
GloFish)

More time in top Sackerman et al. (2010)

Fluoxetine 100 μg/L immersed for 2 weeks Novel tank (wild
type)

More top entries and time in top, less
freezing and erratic movements

Wong et al. (2010a)

Lysergic acid
diethylamide (LSD)

250 μg/L immersed for 20–50 min Novel tank, open field
(wild type)

Increased top dwelling, more time in
top, reduced freezing, mild increase
in light behavior

Grossman et al. (2010)

Olanzapine 3.12 mg/L immersed for 15 and
30 min

Novel tank (wild
type)

More time in top, increased overall
and top swimming

Seibt et al. (2010)

Cholinergic drugs
Nicotine 50 and 100mg/L immersed for 3 min Novel tank (wild

type)
More time in top Levin et al. (2007)

25 mg/L immersed for 3–4 min Light–dark plus-maze
(AB, WIK, GloFish)

Longer freezing duration in center
(AB strain)

Sackerman et al. (2010)

50 mg/L immersed for 3–4 min Novel tank (AB, WIK,
GloFish)

More time in top Sackerman et al. (2010)

10 mg/L immersed for 5 min Novel tank (wild
type)

Shorter latency to top, more time
in top

Stewart et al. (2011)

Histaminergic drugs
α-Fluoro-methyl-
histidine

100 mg/kg injected systemically
24 h prior to testing

Open field (AB, wild
type)

Increased center swimming Peitsaro et al., (2003)

Glutamatergic drugs
MK-801 6.74 mg/L immersed for 30 or

60 min
Novel tank (wild
type)

More time in top, increased overall
and top swimming

Seibt et al., (2010)

Anxiogenic compounds
Adenosinergic system

Caffeine 100 mg/L immersed for 15 min Novel tank (wild
type)

Longer latency to top, fewer transitions,
more erratic movements

Egan et al. (2009)

GABA-ergic drugs
FG-7142 0.12, 0.17 and 0.23 mg/L immersed

for 75 min
Open field (AB) Overall hyperlocomotion, increased

thigmotaxis
(Lopez-Patino et al., 2008;
Lopez Patino et al., 2008)
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Lockwood et al., 2004; Renier et al., 2007; Rubinstein, 2006). However,
larval zebrafish possess certain translational limitations for neurobeha-
vioral research, being less complex behaviorally and morphologically,
andnot always translatingdrug-evokedbehavioral and spinal responses
into brain phenotypes (e.g., Airhart et al., 2007). At the same time, there
is a growing recognition of opportunities offered by adult zebrafish
models, whose strengths include relevance of adult fish physiology to
human brain disorders, well-developed motor, sensory and endocrine
systems, high sensitivity to environmental challenges, and a wider
spectrum of behavioral phenotypes (Burne et al., 2011; Cachat et al.,
2010d; Egan et al., 2009; Grossman et al., 2010; Norton and Bally-Cuif,
2010; Stewart et al., 2010b;Webb et al., 2009). Therefore, our paperwill
focus on adult zebrafish models and their developing utility to study
pharmacogenic anxiety.
In addition to various drugs summarized in Table 1, several
compounds were tested in adult zebrafish in our laboratory, including
pentylenetetrazole (PTZ), pentobarbital, cocaine, tranylcypromine
(TCP), fluoxetine, lysergic acid diethylamide (LSD), morphine, and
naloxone (Figs. 1–4). PTZ is a blocker of the gamma-aminobutyric acid
(GABA) A receptor channel, and is often used to induce pharmaco-
genic anxiety in rodent studies (de Angelis, 1992; Kayir and Uzbay,
2006). The barbiturate pentobarbital is an anxiolytic drug facilitating
GABA-ergic neurotransmission (Wong et al., 2010b). Cocaine, TCP,
and fluoxetine modulate central monamines, such as serotonin, by
blocking their reuptake (cocaine, fluoxetine) or degradation (TCP)
(Airhart et al., 2007; Jie et al., 2009; Lopez-Patino et al., 2008). LSD is
a potent hallucinogen that acts via several serotonin receptors
(Backstrom et al., 1999; Wing et al., 1990). Morphine is the



Fig. 1. Behavioral effects of acute 30-min pentobarbital (5–20 mg/L) exposure on zebrafish behavior in the novel tank test. A one-way ANOVA test (factor:dose) revealed that the
drug significantly affects top transitions (F(3, 37)=3.5, Pb0.05) and the time spent in top (F(3, 37)=3.5, Pb0.05) in adult wild type (short-fin) zebrafish. Data are presented as
mean±SEM (n=8–10 per group), *Pb0.05 vs. control; post-hoc Tukey test for significant ANOVA data.

Fig. 2. Behavioral effects of acute 20-min morphine (A) and naloxone (B) exposure on zebrafish behavior in the novel tank test. A one-way ANOVA test (factor: dose) revealed that
morphine (1–5 mg/L) significantly affects the latency to enter the top (F(3, 51)=2.9, Pb0.005) and the number of top transitions (F(3, 51)=2.8, Pb0.005). Naloxone (0.5–5 mg/L)
significantly affected time spent in top (F(3, 59)=3.2, Pb0.05) and the number of erratic movements (F(3, 59)=4.6, Pb0.005) in adult wild type (short-fin) zebrafish. Data are
presented as mean±SEM (n=13–16 per group), *Pb0.05, ***Pb0.005 vs. control; post-hoc Tukey test for significant ANOVA data.
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Fig. 3. Behavioral effects of acute 20-min fluoxetine (A) and lysergic acid diethylamide (LSD; B) exposure on zebrafish behavior in the novel tank test. A one-way ANOVA test (factor:
dose) revealed that fluoxetine (100–1000 μg/L) did not affect zebrafish behavior, whereas LSD (25–250 μg/L) significantly affected the latency to enter the top (F(3, 49)=10.3,
Pb0.005), number of top transitions (F(3, 49)=8.7, Pb0.005), time spent in top (F(3, 49)=9.7, Pb0.005), and freezing bouts (F(3, 49)=13.8, Pb0.005) in adult wild type (short-
fin) zebrafish. Data are presented as mean±SEM (n=10–16 per group), **Pb0.01, ***Pb0.005 vs. control; post-hoc Tukey test for significant ANOVA data.
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prototypical opioid receptor agonist, whereas its competitive antag-
onist naloxone has been used to define various effects mediated by
endogenous opioids (Brownstein, 1993; Sawynok et al., 1979). The
drug doses and pretreatment times were chosen based on pilot
studies with a wide range of doses and treatment times (Figs. 1–4).

In addition to acute exposure, zebrafish anxiety behavior can be
modulated by chronic drug administration (Table 1), as well as by
withdrawal. Recently reviewed in-depth (Stewart et al., 2011), these
models will not be discussed here. Finally, zebrafish behavioral
neuroscience is a relatively young field, and continues to adapt rodent
paradigms, such as open field, light–dark box, startle, shoaling, and
predator exposure tests (Champagne et al., 2010; Dlugos and Rabin,
2003; Grossman et al., 2010; Levin et al., 2006, 2007; Maximino et al.,
2010a, 2010c; Stewart et al., 2010b). Our paper will focus on the
model that is currently most widely used in adult zebrafish anxiety
research — the novel tank test (Cachat et al., 2010a; Egan et al., 2009;
Levin et al., 2007; Sackerman et al., 2010; Wong et al., 2010a).

2. Analysis of zebrafish anxiety-like behavior

The novel tank test (also known in the literature as the novel tank
diving test) is based on the tendency of zebrafish to seek protection in
an unfamiliar environment by diving and remaining at the bottom
(geotaxis) while they are acclimated to the novel environment
(Cachat et al., 2010b; Egan et al., 2009; Stewart et al., 2010b; Wong
et al., 2010a). Adult zebrafish used in behavioral research are
generally obtained from various vendors, or raised in-house in the
animal facilities. For example, zebrafish used in our studies (Figs. 1–4)
were of wild type short-fin strain, 5–7 month-old, 2–3 cm long, and
~50:50 male:female ratio. They were housed in groups (15–20 fish
per tank) in 40-L glass tanks filled with filtered facility water for at
least 20 days prior to the novel tank testing (room and water
temperature was maintained at 25–27 °C, and water pH at 7.0–7.5).

Following a 1-h acclimation to the testing room (Cachat et al.,
2010b), zebrafish are typically placed individually in a 1.5-L
trapezoidal tank (e.g., 15 height×28 top×22 bottom×7 cm width;
Aquatic Habitats, Apopka, FL) maximally filled with water (Egan et al.,
2009; Levin et al., 2007). The novel tank rests on a level, stable surface
and is divided into three (Levin et al., 2006, 2007) or two (Egan et al.,
2009;Wong et al., 2010a) equal virtual horizontal sections, marked by
a dividing line on the outside walls of the tank. If testing continues
over a period of several days, the apparatus remains in the same
location with uniform consistent lighting conditions (Cachat et al.,
2010b). Fish are also tested during the same time frame each day (e.g.,
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Fig. 4. Behavioral effects of acute 20-min cocaine (A) and tranylcypromine (TCP; B) exposure on zebrafish behavior in the novel tank test. A one-way ANOVA test (factor: dose) revealed
that cocaine (1–25 mg/L) significantly affects the number of top transitions (F(3, 39)=5.9, Pb0.005) and freezing duration (F(3, 39)=5.7, Pb0.005). TCP exposure (50–500 μg/L)
significantly affected the latency to enter the top (F(3, 53)=13.8, Pb0.005), number of top transitions (F(3, 53)=16.4, Pb0.005), and freezingduration (F(3, 53)=14.1, Pb0.005) in adult
wild type (short-fin) zebrafish. Data are presented as mean±SEM (n=10–14 per group), *Pb0.05, **Pb0.01, ***Pb0.005 vs. control; post-hoc Tukey test for significant ANOVA data.
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10.00–16.00), to avoid circadian variation in locomotor activity and
hormonal secretion (Cachat et al., 2010a; Grossman et al., 2010;Wong
et al., 2010a; also see Cachat et al., 2010b for a detailed review). The
following endpoints are typically recorded in the novel tank test for 5-
6 min: the latency to reach the upper portion of the tank (s), time
spent in the upper portion of the tank (s), number of transitions
(entries) into the upper portion of the tank, number of erratic
movements, number of freezing bouts and time spent freezing (s).
Erratic movements represent sudden changes in direction or velocity
and repeated rapid darting behaviors. A bout of freezing is defined as a
total absence of movement, except for the gills and eyes, for 2 s or
longer. A significant decrease in exploration (i.e., longer latency to
reach the top, fewer entries to the top, longer and more frequent
freezing) together with elevated erratic movements and freezing
generally reflect high stress and anxiety in this model (Barcellos et al.,
2007; Cachat et al., 2010b; Egan et al., 2009; Levin et al., 2007).

Automated video-tracking further complements manual observa-
tion of zebrafish behavior (Bencan et al., 2009; Gerlai, 2005; Gerlai
et al., 2009; Grossman et al., 2010; Levin et al., 2007). Trials can be
recorded to a computer via hardware video-camera, and subsequently
analyzed using video-tracking software (e.g., Ethovision XT7, Noldus
IT, Netherlands) to generate additional endpoints, such as distance
traveled or velocity (Cachat et al., 2010d).

For acute drug exposure, fish are generally transferred from home
tanks to exposure beakers for a specified pretreatment time prior to
novel tank testing (Cachat et al., 2010b). However, because thezebrafish
is a relatively new model organism, effective concentrations for many
psychotropic compounds are unknown. Since the primary method for
zebrafishdrug exposure— immersion (water bath application)—differs
from rodent models (generally exposed via injection [13]), relating an
injected drug dose to an immersed drug dose is a difficult task (Stewart
et al., 2011). However, while finding effective doses and optimal
pretreatment times requires numerous pilot experiments, the growing
body of zebrafish evidence (Table 1, Figs. 1–4) continues to narrow this
knowledge gap (Cachat et al., 2010b).

Immersion, widely used in zebrafish behavioral research (Cachat
et al., 2010a; Egan et al., 2009; Grossman et al., 2010; Wong et al.,
2010b), is preferred over injection techniques (which lead to pain and
can confound behavioral data (Cachat et al., 2010b; Stewart et al.,
2010a)), and is particularly suitable for chronic drug treatment.
However, administration of certain drugsmay affect water pH, oxygen
exchange in the gills or swim bladder physiology (Bailey et al., 1996;

image of Fig.�4


1426 A. Stewart et al. / Progress in Neuro-Psychopharmacology & Biological Psychiatry 35 (2011) 1421–1431
Finney et al., 2006; Nilsson and Fange, 1967; Stray-Pedersen, 1970),
leading to potential confounds in data interpretation. Thus, it may be
necessary to examine various additional anxiety-related phenotypes
(e.g., c-fos expression, endocrine responses, escape reactions and non-
vertical scototaxic/thigmotaxic behaviors; Champagne et al., 2010;
Maximino et al., 2010a,c), assess possible spinal and peripheral drug
effects (e.g., irritation to the gills, eyes or skin), and perform chemical
analyses of drug concentrations in the brain (Nakanishi et al., 2002;
Stewart et al., 2010a; Storey, 2005). In any case, a careful analysis of
such potential factors, and putting them in a context of known effects
of different drugs in other non-fish models, is key for correct data
interpretation in this model.

3. Pharmacological modulation of zebrafish anxiety

3.1. GABA-ergic system

Central GABA is a key regulator of clinical (Kalueff and Nutt, 1996; Pilc
andNowak, 2005; Rupprecht and Zwanzger, 2003; Zwanzger et al., 2009)
and experimental anxiety (Frankowska et al., 2007; Gilhotra andDhingra,
2010; Mombereau et al., 2004). Zebrafish have a well-described GABA-
ergic system (Kim et al., 2010; MacDonald et al., 2010; Mueller and
Wullimann, 2009) which, while not identical to human, functions in the
neuronal pathways similarly to its role in themammalian brain (Panula et
al., 2010; Panula et al., 2006). Like in rodents (de Angelis, 1992; Kayir and
Uzbay, 2006), inhibition of the zebrafish GABA-ergic system by PTZ leads
to robust anxiety behavior (Wong et al., 2010a). For example, acute PTZ
exposure (900 mg/L for10 min;n=10pergroup) reduced top transitions
(5.1±0.88; Pb0.005, U-test) and tends to increase erratic behavior
(13.5±3.3; P=0.05−0.09, U-test) vs. controls (14.4±2.3 and 6.6±2.4,
respectively). Together with the anxiogenic action of a benzodiazepine
receptor inverse agonist FG-7142 on zebrafish (Table 1), this indicates
that inhibition of the GABA-ergic system in fish has a similar anxiogenic
effect as in other vertebrate species, including humans.

Interestingly, pentobarbital administration evokes sedation in zebra-
fish (Fig. 1), consistent with its effects in humans and animals (Abruzzi,
1964; Atkins et al., 2000) and similar to effects of some other GABA-
enhancing drugs (e.g., chlordiazepoxide) on zebrafish (Table 1). Recently
suggested as a good model for studying GABA-ergic sedative agents,
zebrafish possess multiple high-affinity sites and robust genomic/
proteomic responses to these drugs (Renier et al., 2007). Together with
anxiolytic effects also found in zebrafish for GABA-enhancing drugs, such
as diazepam and ethanol (Table 1), this confirms zebrafish as amodel bi-
directionally sensitive to GABA-active anxiotropic drugs.

3.2. Opioidergic system

The opioidergic system plays an important role in themodulation of
human (Castilla-Cortazar et al., 1998; Colasanti et al., 2010; Sher, 1998)
and animal (Colasanti et al., 2010; Wilson and Junor, 2008; Zarrindast
et al., 2008a; Zhang, 1997) anxiety. Similar to mammals, zebrafish
possess a functional opioidergic system, including both opioid peptides
and their receptors (Gonzalez-Nunez and Rodriguez, 2009; Stevens,
2009; Sundstrom et al., 2010). Supporting the utility of zebrafish in
opioid research, recent behavioral studies have confirmed their
sensitivity to the rewarding properties of morphine (Bretaud et al.,
2007; Lau et al., 2006). Our experiments (Fig. 2A) showed that zebrafish
are also sensitive to the non-rewarding anxiolytic action of morphines
(Fig. 2A), similar to that reported in rodents (Kahveci et al., 2006; Shin et
al., 2003; Zhang and Schulteis, 2008), primates (Kalin et al., 1988;
Winslow et al., 2007) and humans (Koran et al., 2005). Although
increased exploration in zebrafish can also be explained by hyperloco-
motion (reported for morphine in rodents; Kahveci et al., 2006; Shin
et al., 2003), a marked reduction in erratic movements (Fig. 2A) is
consistent with the overall anxiolytic nature of these responses.
In contrast, acute administration of opioid antagonist naloxone
induced anxiety-like behaviors in zebrafish (Fig. 2B), accompanied by
restlessness with frequent short hyperactivity bouts (data not shown).
While mouse naloxone data show either no effects (Belzung and Agmo,
1997a,b; Ribeiro and De Lima, 1998) or paradoxical anxiolysis (Onaivi
andMartin, 1989; Rodgers et al., 2006), this drug does not affect anxiety
in primates (Kalin et al., 1988) and, to the best of our knowledge, has no
clinical effects on anxiety. Notably, several clinical studies have reported
anxiogenic/panicogenic effects of naltrexone, another opioid receptor
antagonist (Esquivel et al., 2009; Kozak et al., 2007; Maremmani et al.,
1998). Our naloxone data (Fig. 2B) suggests that opioid antagonistsmay
trigger anxiety in zebrafish, most likely by inhibiting their naturally
occurring “anti-anxiety” opioid ligands.

It should not be surprising that the effects of opioid ligands, such as
naloxone, may bemore complex in the zebrafish than in mammals. For
example, it has been suggested that two rounds of whole genome
duplication (2R) occurred in early vertebrate evolution, and only the
genome of teleost fishes doubled again (3R) (Sundstrom, Dreborg).
While duplicate genes for dynorphin and the mu or kappa opioid
receptors may have degenerated or adapted to other functions,
zebrafish appear to have two versions of proenkephalin, pro-opiome-
lanocortin, pronociceptin (Sundstrom, Dreborg) and the delta opioid
receptor (Gonzalez-Nunez and Rodriguez, 2009). The active opioid
peptides produced from the precursors are similar in sequence to those
of mammals, but are likely to be in varying relative concentrations. The
presence of two delta receptors may be particularly interesting in
relation to anxiety. For example, delta receptor- and proenkephalin-
knockout mice show increased anxiety (Filliol et al., 2000; Ragnauth
et al., 2001; Roberts et al., 2001), implying that delta receptor agonists
maybe anxiolytic. Thismayexplain someof the drug-inducedbehaviors
in zebrafish (Fig. 2B), which, given their elaborate opioidergic system,
may be particularly sensitive to antagonists like naloxone. Thus,
zebrafish may provide a useful model to study both opioid receptor-
mediated anxiolysis and withdrawal-induced anxiety (Colasanti et al.,
2010). However, further studies utilizing various zebrafish paradigms
and other opioid agonists or antagonists are needed to better
understand the complex modulation of anxiety by opioidergic agents.

3.3. Serotonergic system

Serotonergicmechanisms are strongly implicated in human (Charney
et al., 1990; Deakin, 1998; Eison, 1990; Hoes, 1982) and animal anxiety
(Handley and McBlane, 1993; Handley et al., 1993; Heisler et al., 2007).
Since selective serotonin reuptake inhibitors (SSRIs) are potent mod-
ulators of brain serotonin (Esler et al., 2007; Goldstein and Goodnick,
1998), behavioral effects offluoxetine onzebrafishmerit further scrutiny.
Zebrafish possess a well-developed serotonergic system (Stewart et al.,
2010b) which makes them an ideal model for such analyses. Although
not anatomically and genetically conserved, many serotonin receptors
have similar expression patterns, binding, and signaling properties as in
mammals (Panula et al., 2010). Generally paralleling rodent and clinical
literature on SSRIs, robust anxiolytic action of chronicfluoxetine has been
reported in zebrafish (Egan et al., 2009; Stewart et al., 2010b). In contrast,
acute SSRI treatment has been reported to evoke anxiety in humans
(Belzung et al., 2001; Enginar et al., 2008; Goldstein andGoodnick, 1998)
and rodents (Bagdyet al., 2001;Drapier et al., 2007;Kurt et al., 2000; Silva
et al., 1999). Acute fluoxetine did not affect zebrafish behavior (Fig. 3A),
and citalopram was anxiolytic in this model (Sackerman et al., 2010).
While the lack of zebrafish anxiety following acute fluoxetine (Fig. 3A)
contradicts clinical and rodent findings, acute SSRIs may exert complex
behavioral profiles, including anxiolysis (Hascoet et al., 2000; Lightowler
et al., 1994; Molewijk et al., 1995; Varty et al., 2002). Furthermore, the
lack of anxiogenic effects of acute SSRImay also be due to permeability to
serotonin of the blood-brain barrier in teleosts (Khan and Deschaux,
1997), counterbalancing potentially anxiogenic effects of the sharp
elevation of brain serotonin caused by these drugs.
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A serotonergic 5-HT1A agonist buspirone dose-dependently increases
time in top of the novel tank test (Bencan et al., 2009),which is consistent
with well-known anxiolytic effects of this agent in humans and rodents.
Olanzapine (an antipsychotic drug with affinity for 5-HT2A/C and 5-HT3
receptors) evokes similar responses in zebrafish (Seibt et al., 2010),
paralleling its clinical (Freeman et al., 2009; Maina et al., 2008) and pre-
clinical (Mead et al., 2008; Sun et al., 2010) anti-anxiety effects. LSD,
recently tested in several zebrafish paradigms or both (Grossman et al.,
2010), increases top exploration and reduces freezing in the novel tank
test (Fig. 3B), resembling the second (positive) phase of the drug's well-
known biphasic action on rodents and humans (Adams and Geyer, 1982,
1985; Gupta, 1971; Krebs-Thomson and Geyer, 1996; Marona-Lewicka
et al., 2005; Mittman and Geyer, 1991; Palenicek et al., 2010; Uyeno and
Benson, 1965). While it is unclear whether the behavioral effects of LSD
inzebrafish arehallucinogenic, anxiolytic, or both (Grossmanet al., 2010),
the lack of confounding anxiety (typical for the initial “anxiety” phase of
LSD action in rodents and humans) in these fish models is beneficial.
Furthermore, ethograms-based analyses have also been applied to
zebrafishmodels, assessing frequencies and transitions betweendifferent
behaviors to reveal drug-induced alterations in the overall sequential
patterning of their novel tank activity (Cachat et al., 2010b,c; Grossman et
al., 2010).

In contrast, cocaine dose-dependently inhibited zebrafish behav-
ior, evoking longer freezing and fewer top transitions (Fig. 4A). This
response parallels cocaine's known anxiogenic profile in rodents and
humans (Blanchard and Blanchard, 1999; Blanchard et al., 1998a,
1999; Costall et al., 1989; Daza-Losada et al., 2009; Fontana and
Commissaris, 1989; Salas-Ramirez et al., 2010; Simon et al., 1994;
Sobrian et al., 2003), but is not consistent with previous zebrafish
studies showing the lack of anxiety in a wide range of systemic doses
(Lopez-Patino et al., 2008; Lopez Patino et al., 2008). It is possible that
the inbred AB zebrafish strain (hyperactive in anxiety-evoking
situations Norton and Bally-Cuif, 2010)) used in these studies was
less sensitive to the anxiogenic effects, compared to the outbred wild
type short-fin strain used here (Fig. 4A). A similar situation has been
reported in rodents, where cocaine was anxiogenic in non-anxious
strains, but failed to affect the behavior of selectively-bred anxious
rats (Rogerio and Takahashi, 1992). Likewise, zebrafish strains may be
differentially sensitive to cocaine (similar to their strain-specific
sensitivity to ethanol Dlugos and Rabin, 2003)) or treatments
(0.0045–45 mg/L cocaine for 75 min (Lopez-Patino et al., 2008) vs.
1–25 mg/L for 20 min here).

Furthermore, we also examined the behavioral effects of inhibition
of monoamine oxidase (MAO), whose inhibitors (MAOIs) are
clinically effective against various anxiety disorders (Ballenger,
1999; Mallinger et al., 2009). In rodents, MAOIs reduce anxiety- and
depression-like behavior chronically (Crawley, 1985; Maki et al.,
2000; Takamori et al., 2001) but yield conflicting results after acute
administration, including both a lack of effects (Griebel et al., 1998,
1997; Holmes and Rodgers, 2003; Lecci et al., 1990) and anxiolysis (de
Angelis, 1996; Freund et al., 1979; Maki et al., 2000). Reducing anxiety
in rodents (de Angelis, 1996; Freund et al., 1979; Maki et al., 2000;
Negishi et al., 2004), a non-selective irreversible MAOI TCP produced
similar anxiolytic-like responses in zebrafish (Fig. 4B; albeit causing
behavioral inhibition at high doses). While these findings parallel
clinical and rodent data, further research using various serotonergic
drugs will provide more insights on their behavioral effects in
zebrafish. For example, as zebrafish possess only one isoform of
MAO, it is interesting to establish whether MAOIs modulate their
serotonergic and noradrenergic systems (e.g., affecting anxiety) or act
on the dopaminergic system (e.g., producing motor activation).

3.4. Cholinergic system

The cholinergic system is emerging as another target for pharma-
cological modulation of zebrafish anxiety, since N-cholinergic agonist
nicotine elicits consistent and very robust anxiolytic responses in the
novel tank test (Bencan and Levin, 2008; Levin et al., 2007; Stewart et al.,
2011) (Table 1). Although 100 mg/L produces the most reliable
anxiolytic effects (Bencan and Levin, 2008), they are dose-dependent
(Levin et al., 2006, 2007) and parallel clinical (Picciotto et al., 2002) and
rodent data (Cohen et al., 2009) for this drug. Interestingly, co-
administration of nicotine with methyllycaconitine (MLA) attenuates
the anxiolytic response in zebrafish, increasing bottom dwelling and
reducing activity (Bencan and Levin, 2008). Since MLA is an antagonist
for the N-cholinergic receptor, the novel tank test may be useful in
screening the effects of various cholinergic compounds on zebrafish
anxiety.

3.5. Other systems

In addition to geotaxis, adult zebrafish show overt thigmotaxis in
novel environments (Champagne et al., 2010; Maximino et al., 2010b),
resembling anxiety-like peripheral locomotion in a rodent open field
test. Rodent thigmotaxis is sensitive to anxiogenic and anxiolytic drugs
(Choleris et al., 2001; Simon et al., 1994), and similar modulation
exists for adult zebrafish behavior. For example, zebrafish spend
more time in the center of the open field test after a single injection of
α-fluoromethylhistidine — an inhibitor of histidine decarboxylase
(Peitsaro et al., 2003). These findings strongly implicate central
histamine in the regulation of anxiety in zebrafish, which possess a
well-developed histaminergic system with a conserved innervation
pattern (Cofiel andMattioli, 2009; Kaslin and Panula, 2001; Panula et al.,
2010; Peitsaro et al., 2007), and three histamine receptors that parallel
the H1, H2 and H3 receptors of the mammalian brain (Panula et al.,
2010). Given the important role of histamine and its receptors in clinical
and animal anxiety-related states (Dere et al., 2010; Zarrindast et al.,
2006, 2008b), zebrafish are likely to represent useful screens for
anxiotropic histaminergic drugs.

The central glutamatergic system has also been linked to anxiety in
humans (Mathew et al., 2008; Nair and Singh Ajit, 2008) and rodents
(Blanchard et al., 1992; Moraes et al., 2008). Since glutamatergic
mechanisms play an important role in the zebrafish brain (e.g., Edwards
and Michel, 2002), recent behavioral studies have exposed zebrafish to
several glutamatergic drugs. For example, N-methyl D-aspartate
(NMDA) receptor antagonist ketamine produces robust behavioral
activation in adult zebrafish (Zakhary et al., 2011), strikingly paralleling
the drug's hyperlocomotory effects in rodents (da Silva et al., 2010;
Irifune et al., 1998). Although ketamine has anxiolytic-like action on
clinical (Irwin and Iglewicz, 2010) and animal (Engin et al., 2009;
Pietersen et al., 2006; Sufka et al., 2009) anxiety, anxiogenic effectswere
also reported in rodents (da Silva et al., 2010). Therefore, this aspect of
ketamine's behavioral pharmacology remains to be explored in
zebrafish in detail. Interestingly, a similar profile was reported for
another NMDA antagonist, MK-801, reducing anxiety in both zebrafish
(Seibt et al., 2010) (Table 1) and rodents (Blanchard et al., 1992;
Soderpalm et al., 1995).

Finally, a growing body of literature confirms the role of adenosine
and its receptors in anxiety pathogenesis (Correa and Font, 2008;
Kulkarni et al., 2007). Adenosine has an inhibitory effect on the brain,
and exerts robust anxiolysis in rodents (Kulkarni et al., 2007). In
contrast, its non-selective antagonist caffeine acts as an anxiogenic
agent, as shown in clinical (Childs et al., 2008; Lara, 2010), rodent
(Bradley et al., 2010; Kulkarni et al., 2007) and zebrafish studies (Egan
et al., 2009) (Table 1).

4. Concluding remarks

Overall, this paper provided an updated summary of pharmaco-
genic modulation of adult zebrafish anxiety. In addition to GABA-
ergic, serotonergic, histaminergic, cholinergic and opioidergic sys-
tems, the role of other neurotransmitters continue to emerge in
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zebrafish models. This paper also raises several other important
questions. For example, while adult zebrafish anxiety is sensitive to
many classes of traditional psychotropic drugs (Table 1, Figs. 1–4),
modern biological psychiatry requires new models to be able to
identify novel drugs (Bergner et al., 2009; Kalueff et al., 2007; LaPorte
et al., 2010). Therefore, in addition to further validating zebrafish
paradigms using agents with known psychopharmacology, these
models may also help identify potential new classes of psychotropic
drugs.

As already mentioned, species differences in neurobiology and
pharmacology may be crucial in some aspects of drug effects.
However, in many cases (Table 1, Figs. 1–4) the observed phenotypes
parallel animal and clinical evidence, thereby supporting the validity
and translatability of adult zebrafish models. Zebrafish models are
also important from an evolutionary perspective, allowing identifica-
tion of common conserved pathways and circuits involved in anxiety
regulation.

A common problem with most exploration-based models is their
sensitivity to variations in other domains, such as cognitive functions,
locomotor activity and arousal. For example, similar to rodent models,
zebrafish hypoactivity may easily be misinterpreted as anxiety or
increased habituation (Kalueff and Murphy, 2007; Stewart et al.,
2010c; Wong et al., 2010a). Therefore, it is important to detect drug
effects and discriminate between classes of effects, also recognizing
that zebrafish phenotypes may be more complex than currently
understood. For example, while non-competitive NMDA receptor
antagonists ketamine or MK-801 evoke anxiolytic-like responses in
zebrafish, their reversal by antipsychotics implies an additional,
psychotomimetic-like profile (Seibt et al., 2010). Therefore, further
domain-specific research may be needed, with agents that produce
hyperlocomotion (e.g., amphetamine) used to dissect novelty-evoked
anxiety (vs. activity-related) phenotypes. Again, sophisticated video-
tracking tools will be particularly useful for this, as selected computer-
generated endpoints (e.g., distance travelled or velocity) can reliably
characterize activity-related responses (Cachat et al., 2010b).

From past literature (Egan et al., 2009; Norton and Bally-Cuif, 2010;
Speedie and Gerlai, 2008)we know that zebrafish display robust stress-
related behaviors. However, it is unclear whether they display common
stress-evoked behaviors, or different (e.g., anxiety vs. fear) behaviors in
different situations. While interest in zebrafish models is rapidly
growing, the entire catalog of zebrafish behaviors remains unclear,
and we do not knowwhen and where these behaviors occur within the
zebrafish locomotory path. As all traditional zebrafish paradigms are
based on fish location and velocity in 2D coordinates, recent data
obtained in our laboratory (Cachat et al., 2010b,c; Grossmanet al., 2010)
suggests that analysis of 3D swimming trajectories may reveal new
endpoints sensitive to stress, providing a promising data-mining
approach to detect and interpret drug-evoked behavioral responses in
these fish.

In summary, complex zebrafish behavioral responses to pharma-
cological modulation (Table 1, Figs. 1–4) support their utility as a new
model organism for anxiety research. As novel zebrafish paradigms
continue to be developed, the field may benefit from creatively using
this new model species for further conceptual and methodological
progress (Egan et al., 2010; Kalueff et al., 2007; LaPorte et al., 2010).
And while these fish with “small brains”may take a while to generate
“big waves” (Burne et al., 2011; Gerlai, 2009), comprehensive
characterization of zebrafish drug-evoked anxiety phenotypes is a
step in the right direction.
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