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  Abstract 

 Mounting evidence implicates the zebrafi sh ( Danio rerio ) as 
a promising model species for reward and addiction research. 
Modeling drug abuse-related behavior in both adult and lar-
val zebrafi sh produced a wealth of clinically translatable data, 
also demonstrating their sensitivity to various drugs of abuse 
and the ability to develop tolerance. Several studies have also 
applied withdrawal paradigms to model the adverse effects of 
drug abuse in zebrafi sh. In this review, we summarize recent 
fi ndings of a wide spectrum of zebrafi sh drug abuse-related 
behavioral and physiological phenotypes, discuss the existing 
challenges, and outline potential future directions of research 
in this fi eld.  

   Keywords:    anxiety;   drug abuse;   cortisol;   stress tolerance; 
  withdrawal;   zebrafi sh.    

   Introduction 

 Drug abuse and addiction are serious mental health and 
societal problems (Larson and Bammer , 1996 ; Banken , 
2004 ; Aceijas et al., 2006; Brady et al. , 2008   ). They rep-
resent complex brain disorders with multiple symptoms 
(Figure  1  ) caused by both genetic and environmental fac-
tors (Brunette et al. , 2003 ; Sareen et al. , 2004 ; Busto et 
al. , 2010 ; Cheung et al. , 2010 ; Hamilton , 2010 ). Various 
experimental (animal) models have been introduced to tar-
get different aspects of drug abuse (Brady , 1991 ; Markou 
et al. , 1993 ; Crabbe et al. , 1994 ; Friedman and Eisenstein , 
2004 ; Jentsch , 2008 ). 

 Zebrafi sh ( Danio rerio ) continue to emerge as a new 
promising model for reward and addiction research (Gerlai 
et al. , 2000 ; Ninkovic and Bally -Cuif, 2006 ; Webb et al. , 

2009 ; Cachat et al. , 2010 ). Dopaminergic projections to 
zebrafi sh forebrain parallel the mesolimbic system (impli-
cated in drug addiction in mammals; Rink and Wullimann , 
2002 ), representing a pathway that is highly conserved 
and develops at early ontogenesis (Boehmler et al. , 2004 ). 
Various behavioral paradigms have been particularly useful 
in zebrafi sh addiction research (Table  1  ). For example, con-
ditioned place preference (CPP) and similar models reveal 
strong rewarding properties of different drugs in zebrafi sh 
(Kily et al. , 2008 ; Webb et al. , 2009 ). Genetic factors also 
contribute to zebrafi sh behavioral responses (Egan et al. , 
2009 ), demonstrating the link between individual genes 
and reward phenotypes (Ninkovic et al. , 2006 ; Webb et al. , 
2009 ). 

 Modeling zebrafi sh behavior traditionally utilizes both 
adults and younger animals, including  ‘ larvae ’  and older, 
free-feeding  ‘ fry ’ . Although the distinction between lar-
vae and fry is important, for the purposes of this article we 
will apply the term  ‘ larvae ’  to both these stages. Overall, 
zebrafi sh larvae display robust drug-evoked neurobehav-
ioral phenotypes (Best and Alderton , 2008 ) and offer the 
ability to study multiple animals simultaneously within a 
high-throughput battery (Best and Alderton , 2008 ; Best et 
al. , 2008 ; Creton , 2009 ). However, larval models do not 
always display the complex behavior of their adult coun-
terparts and lack fully established mediatory and endocrine 
systems (Kimmel et al. , 1995 ), neural circuits (Kastenhuber 
et al. , 2010 ), and neuromuscular systems (Dou et al. , 2008 ). 
Therefore, both models should be used complementarily 
to study drug abuse-related neurobehavioral domains 
(Figure  1 ). 

 Particular focus must be given to selecting the drug con-
centrations for zebrafi sh studies. First, background litera-
ture is lacking for many psychotropic drugs, because the 
zebrafi sh is a new model in behavioral pharmacology (Zon 
and Peterson , 2005 ; Rubinstein , 2006 ; Liang , 2009 ). Second, 
although zebrafi sh possess all major  ‘ mammalian ’  neurotrans-
mitters, peptides, and hormones (Egan et al. , 2009 ; Mueller 
and Neuhauss , 2010 ), species differences in animal physiol-
ogy play a role. For example, unlike humans and rodents, 
zebrafi sh have two forms of the serotonin transporter (SERT 
A and B) (Wang et al. , 2006 ; Norton et al. , 2008 ; Severinsen et 
al. , 2008 ). Furthermore, the blood-brain barrier of teleost fi sh 
is less exclusive than in mammals, enabling serotonin to pass 
through it and affect both central and peripheral mechanisms 
(Genot et al. , 1981 ; Khan and Deschaux , 1997 ; Stoddard et 
al. , 2003 ). Thus, zebrafi sh might be differentially sensitive to 
various serotonergic drugs, compared to other model species. 
Third, discrepancies are probable within different zebrafi sh 
studies, because it is diffi cult to translate drug concentra-
tions from larval into adult fi sh models. Finally, because the a These authors contributed equally.
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 Figure 1    Multiple inter-related domains of drug abuse. 
 Note that all these behavioral domains are highly relevant to zebrafi sh models of drug abuse described here.    

method of drug treatment in most zebrafi sh studies is immer-
sion (instead of injection, as in other species), the effective 
drug concentrations can be based on different pharmacoki-
netics than in rodents or humans. However, this does not 
necessarily represent a fl aw of a model. For example, water 
immersion can be advantageous for some drugs (e.g., that 
are quickly metabolized or require prolonged treatment) and 
does not involve injection stress that could confound behav-
ioral data.  

  Sensitivity of zebrafi sh to drugs of abuse 

 Animal sensitivity to acute and chronic drugs of abuse 
(including both reward-related and other behavioral 
effects) is an important phenotype (Figure  1 ) (Gerlai et 
al. , 2000  , 2006 ; Ninkovic and Bally -Cuif, 2006 ; Cachat 
et al. , 2010 ) which correlates with the potential of drug 
abuse. The sensitivity to drugs of abuse revealed strong 
genetic determinants of both increased (Martin et al. , 2000 ; 
Michna et al. , 2001 ; Lindemann et al. , 2008 ) and decreased 
(Trigo et al. , 2007 ; Krall et al. , 2008 ; Thomsen et al. , 2009 ) 
risks of drug abuse. Both animal and clinical models reveal 
striking parallels in their sensitivity to cocaine (Reichel 
and Bevins , 2010 ), amphetamine (Mathews et al. , 2010 ), 
benzodiazepines (Straub et al. , 2010 ), ethanol (Heilig et 
al. , 2010 ), nicotine (Jackson et al. , 2009 ), opiates (Solecki 
et al. , 2009 ), and other psychotropic compounds (Melichar 
et al. , 2001; Passie et al., 2008 ). Zebrafi sh models are 
also sensitive to a wide range of psychotropic compounds 
(Table  1 ). Although these responses will be only briefl y 

discussed here, they generally parallel rodent and clinical 
observations, thereby confi rming the translational value of 
zebrafi sh models. 

 Larval zebrafi sh display an overt morphine preference, 
which is reduced by pretreatment with naloxone and abol-
ished by blocking dopamine signaling with D1 antagonists 
(Bretaud et al. , 2007 ). Adult zebrafi sh also show a strong 
dose-dependent preference for morphine (Lau et al. , 2006 ), 
which strikingly resembles rodent responses to this drug 
(Barr et al. , 1985 ; Sala et al. , 1992 ; Garcia -Lecumberri et 
al., 2010 ). 

 Zebrafi sh models have been extensively used to study 
the effects of ethanol. In larvae, acute exposure to etha-
nol evokes hyperlocomotion at lower doses and a hypolo-
comotory effect at higher doses (Lockwood et al. , 2004 ). 
Strain differences in larval ethanol responses have also been 
reported (Loucks and Carvan , 2004 ; Lockwood et al. , 2004 ). 
A similar U-shaped dose-response curve has been observed 
in adult zebrafi sh (Gerlai et al. , 2000 ), also showing strain-
dependent variations in their responses to ethanol (Gerlai et 
al. , 2008 ), as well as reduced shoaling and increased aggres-
siveness (Echevarria et al. , 2010 ). By contrast, chronic etha-
nol treatment has an anxiolytic effect on zebrafi sh behavior 
(Egan et al. , 2009 ) (Figure  2  A), also altering the expres-
sion of multiple brain genes, some of which are implicated 
in addiction (Kily et al. , 2008 ) and similarly affected by 
ethanol in mammals (Sircar and Sircar , 2006 ; Heilig et al. , 
2010 ). 

 Nicotine exposure produces strong effects on zebrafi sh 
place preference and learning (Levin and Chen , 2004 ; 
Kily et al. , 2008 ). Although learning and memory are not 
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specifi cally addressed here, the established effects of drugs 
of abuse that affect cognitive functions give further validity 
to the zebrafi sh model of drug abuse (Gerlai et al. , 2006 ; 
Ninkovic and Bally -Cuif, 2006 ; Lopez -Patino et al., 2008 ; 
Grossman et al. , 2010 ). Chronic nicotine exposure in lar-
val zebrafi sh leads to reduced swimming and impairs their 
startle response (Parker and Connaughton , 2007 ). In adult 
zebrafi sh, acute administration of nicotine has an anxiolytic-
like effect (Levin et al. , 2006  , 2007 ) (also see Figure  2 B) 
similar to its effect in humans and rodents (Jackson et al. , 
2009 ). 

 Although zebrafi sh show a clear preference for cocaine 
in the CPP paradigm, there are also several strains with a 
decreased sensitivity in this model (Darland and Dowling , 
2001 ; Lopez -Patino et al., 2008 ). Overall, zebrafi sh CPP 
models display a substantial similarity to rodent cocaine CPP 
studies (Dietz et al. , 2007 ). Adult zebrafi sh treated acutely 
with mild doses of cocaine display arousal (e.g., circling, fi n 
extension), increased aggressiveness, and decreased visual 
sensitivity (Darland and Dowling , 2001 ). However, higher 
concentrations of cocaine reduce fi sh responses (Darland 
and Dowling , 2001 ) in spite of the high brain cocaine levels 
(Lopez -Patino et al., 2008 ). 

 The sensitivity of larval zebrafi sh to amphetamine (Irons 
et al. , 2010 ) generally parallels a similar locomotor response 
observed in mammals. Whereas low concentrations of amphet-
amine increase activity, higher concentrations of this drug 
markedly reduce zebrafi sh locomotion (Ninkovic and Bally -
Cuif, 2006 ; Webb et al. , 2009 ). The rewarding properties of 
amphetamine have been reported in adult zebrafi sh in the CPP 
test (Ninkovic and Bally -Cuif, 2006 ) and also parallel those 
seen in rodents (Mathews et al. , 2010 ). 

 Benzodiazepines are known to activate the reward sys-
tem in rodents (Straub et al. , 2010 ) and have also been tested 
in zebrafi sh models. For example, both chlordiazepoxide 
(CDP) and diazepam display anxiolytic-like effects in adult 
zebrafi sh. Although CDP increases exploratory behavior in 
the light/dark box paradigm, it does not affect vertical local-
ization in the novel tank test (Bencan et al. , 2009 ; Sackerman 
et al. , 2010 ). In contrast, diazepam increases exploration in 
the novel tank, exhibiting a biphasic response for low to mod-
erate doses (Bencan et al. , 2009 ). 

 Unlike their extensive use in rodent research, halluci-
nogenic drugs have only recently been tested in zebrafi sh. 
For example, salvinorin A, one of the most potent halluci-
nogens, exhibits rewarding properties in the CPP, acceler-
ates zebrafi sh swimming in acute low doses, and reduces 
locomotion (evoking low-velocity  ‘ trance-like ’  state) at 
high doses (Braida et al. , 2007 ). Recently resurrected inter-
est in psychedelic drug research (Dyck , 2005 ; Passie et 
al. , 2008 ; Gonzalez -Maeso and Sealfon, 2009 ) guided our 
group ’ s interest to testing these drugs in zebrafi sh. Similar 
to other fi sh species ’  responses to lysergic acid diethylamide 
(LSD) (Keller and Umbreit , 1956 ; Arbit , 1957 ; Trout , 1957 ; 
Chessick et al. , 1964 ), adult zebrafi sh produced signifi cantly 
shorter latency to enter the top and fewer freezing bouts 
(Grossman et al. , 2010 ). LSD also caused signifi cantly more 
top transitions and time spent in top, as well as elevated  T
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cortisol levels, consistent with its well-known endocrine 
effects in humans (Bliss et al. , 1956 ) and animals (Sackler et 
al. , 1963 ; Weltman and Sackler , 1966 ). Acute administration 
of another hallucinogen, 3,4-methylenedioxymethamphet-
amine (MDMA), produced less clear-cut behaviors (Figure 
 3  B), although showing a similar reduction in freezing (data 
not shown). Although this might be relevant to known clini-
cal effects of MDMA and LSD, including the rewarding/
euphoric behaviors (Melichar et al. , 2001 ; Passie et al. , 
2008 ) and elevated corticoids (Bliss et al. , 1956 ; Sackler 
et al. , 1963 ; Weltman and Sackler , 1966 ; de la Torre et al. , 

2000 ; Parrott , 2009 ), further research is needed to examine 
zebrafi sh sensitivity to various hallucinogenic drugs. 

 Zebrafi sh can also be used to study plant compounds 
with potential psychoactive properties. For example, kratom 
( Mitragyna speciosa ) is a medicinal leaf, often used as a tea 
for its calming and energizing effects. Mitragynine, the major 
alkaloid identifi ed from kratom, is a partial opioid agonist 
producing similar effects to morphine in mammals (Babu et 
al. , 2008 ). When administered acutely, kratom extract has a 
mild sedative effect in the zebrafi sh novel tank (Figure  4  ) but 
did not have psychoactive/anxiolytic action over a wide range 

 Figure 2    Examples of anxiolytic effects of chronic ethanol and acute nicotine in a 6-min novel tank test. 
 (A) Chronic ethanol (0.3 %  for 1 week; n  =  24 for each group). (B) Acute nicotine administration (10   mg/l for 5   min; n  =  15 per each group). 
** p   <  0.01, *** p   <  0.001, U-test.    

 Figure 3    Examples of behavioral effects of hallucinogenic drugs in a 6-min novel tank test. 
 (A) Acute lysergic acid diethylamide (LSD) administration (250    µ g/l for 20   min; n  =  10 per each group). (B) Acute 3,4-methylenedioxymetham-
phetamine (MDMA) administration (5   mg/l for 20   min; n  =  10 per each group). *** p   <  0.001, U-test.    

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Drug abuse-related phenotypes in zebrafi sh models  99

of concentrations (1 – 12   g/l) tested in our laboratory. This sug-
gests that zebrafi sh can display differential sensitivity to the 
complex behavioral profi les of the drugs.  

  Tolerance and withdrawal 

 Commonly observed for drugs of abuse in both clinical 
(Joseph et al. , 2010 ; Roberts and Dollard , 2010 ) and animal 
(Aley and Levine , 1997 ; Gerlai et al. , 2006 ) studies,  ‘ toler-
ance ’  is the progressive reduction of drug sensitivity, which 
requires higher doses to obtain the same effects. Tolerance 
represents an important drug abuse-related phenotype (Figure 
 1 ), mediated by the brain ’ s adaptive mechanisms (Wang et 
al. , 2007 ; Nagy , 2008 ; Popik et al. , 2010 ). Recent studies 
have confi rmed tolerance in adult zebrafi sh, reporting that 
after chronic exposure to ethanol, zebrafi sh have a reduced 
response to the acute effects of the drug (Gerlai et al. , 2006 ). 
Another study reported tolerance following chronic ethanol 
exposure, which was also infl uenced by zebrafi sh genotype 
(strain) (Dlugos and Rabin , 2003 ). Tolerance is also seen 
in zebrafi sh following chronic exposure to nicotine (Kily et 
al. , 2008 ), collectively paralleling known rodent and clinical 
fi ndings. 

  ‘ Withdrawal ’  is another key phenotype associated with 
drug abuse (Cachat et al. , 2010 ) (Figure  1 ), extensively 
studied in various rodents following cessation of ethanol 
(Morris et al. , 2010 ), cocaine (Santucci and Rosario , 2010 ), 
benzodiazepines (De Ross et al. , 2008 ), and opiates (Becker 
et al. , 2010 ). These symptoms are also sensitive to various 
pharmacological (Bhutada et al. , 2010 ; Rawls et al. , 2010 ), 
genetic (Morice et al. , 2010 ), and behavioral (Smith and 
Yancey , 2003 ; Saadipour et al. , 2009 ) factors. Withdrawal is 
believed to be mediated by the tendency of the body to main-
tain homeostasis, in which counter-regulatory mechanisms 
produce unopposed effects when a drug is abruptly removed 
(Tyrer and Seivewright , 1984 ; Bayard et al. , 2004 ; Khong et 
al. , 2004 ; Cruz et al. , 2008 ; Nagy , 2008 ; Ista et al. , 2010 ). 

 Researchers have recently turned their attention to study-
ing the withdrawal phenomena in zebrafi sh (Table  1 ). Acute 
discontinuation of drug treatment  –  acute (single) withdrawal 
 –  is a common form of withdrawal, evoking strong behavioral 
effects in humans and rodents (Ashton , 1984 ; Kokkinidis et 
al. , 1986 ; Koob et al. , 1989 ; Wiese et al. , 2000 ; Jonkman et 
al. , 2008 ). In all studies, the most common behavioral mani-
festations of withdrawal include anxiety, seizures, sedation, 

and pain (Harris and Gewirtz , 2004 ; Gowing et al. , 2009 ; 
Strong et al. , 2009 ; Joseph et al. , 2010 ; Minozzi et al. , 
2010 ). In zebrafi sh, acute ethanol discontinuation decreases 
zebrafi sh shoaling behavior (Gerlai et al. , 2009 ), whereas 
cocaine withdrawal evokes marked hyperlocomotion marked 
by erratic movements and increased exploratory behavior 
(Lopez -Patino et al., 2008 a,b  ). Acute discontinuation of etha-
nol, diazepam, and morphine produces robust anxiogenic-like 
behavioral responses in zebrafi sh such as hypolocomotion, 
decreased top transitions, and increased freezing bouts in the 
novel tank (Cachat et al. , 2010 ). 

 This novelty-based test (Levin et al. , 2006 ; Egan et al. , 
2009 ; Stewart et al. , 2010 ) is an effective paradigm for observ-
ing withdrawal behavior in zebrafi sh owing to these clear-
cut anxiety-like responses (see other papers in this issue for 
details on zebrafi sh models of anxiety). Our experiments with 
CDP, a sedative benzodiazepine known to produce anxiolytic 
effects in both rodents (Mathiasen et al. , 2008 ) and zebrafi sh 
(Sackerman et al. , 2010 ), have tested its withdrawal potential 
in zebrafi sh. Two groups of fi sh (n  =  15) were administered 
chronic CDP (10   mg/l) for 4   months, with another group of 
similar size used as a drug-free control. One of the CDP-
treated groups was withdrawn from CDP for 7   days before 
testing in the novel tank test (Figure  5  ). The withdrawal group 
displayed an increased latency to the top half of the tank, less 
transitions to the top, and a shorter duration in the top, com-
pared to controls. The withdrawal group also exhibited an 
increased freezing duration, compared to both the control and 
the chronic CDP groups (Figure  5 ). Similar to the response 
observed in both humans (Bearn et al. , 2001 ; Fox et al. , 2009 ; 
Shi et al. , 2009 ) and rodents (Borlikova et al. , 2006 ; Rabbani 
et al. , 2009 ), withdrawal elevates zebrafi sh cortisol, corre-
lating with the expected higher levels of stress and anxiety 
(Cachat et al. , 2010 ) (also see Figure  5  for CDP data). 

 In humans, chronic drug abuse represents a cyclical pro-
cess of repeated reward and withdrawal. Therefore, to more 
accurately model clinical withdrawal phenomena,  ‘ repeated 
withdrawal ’  models are needed in addition to  ‘ acute with-
drawal ’  studies. Repeated drug withdrawal paradigms have 
been recently developed for rodents, showing that both the 
rat and human share common triggers of relapse (such as the 
drug of abuse, stress, stimuli, or the environment conditioned 
to the drug of abuse), and that withdrawal selectively poten-
tiates responses to anxiogenic stimuli (Miczek and Vivian , 
1993 ; Fendt and Mucha , 2001 ; Vorel et al. , 2001 ; Harris and 
Aston -Jones, 2003 ; Jonkman et al. , 2008 ). A recent study 

 Figure 4    Examples of behavioral effects of kratom extract in a 6-min novel tank test. 
 Fish were acutely exposed to 6   g/l of kratom extract for 20   min (n  =  10 per each group).    
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successfully applied repeated withdrawal protocol to adult 
zebrafi sh, reporting that morphine and ethanol withdrawal 
leads to robust anxiety-like behaviors (Cachat et al. , 2010 ). 
Interestingly, not all drugs of abuse evoke withdrawal. For 
example, LSD [known for its low ability to induce withdrawal 
in humans (Parsons et al. , 2009 ) and animals (Banerjee , 
1971 )] does not evoke withdrawal in both acute and repeated 
zebrafi sh models (data not shown). 

 The complexity of withdrawal phenotypes (Martinotti et 
al. , 2008 ; Cooper and Haney , 2009 ; Cruickshank and Dyer , 
2009 ; Henningfi eld et al. , 2009 ; Prat et al. , 2009 ; Shoptaw et 
al. , 2009 ; Teixeira , 2009 ; Wu et al. , 2009 ), as well as the dif-
fi culty in modeling withdrawal syndrome in animals (Keane 
and Leonard , 1989 ; Becker , 2000 ; Braw et al. , 2008 ), repre-
sent another challenge. Potentially interesting directions of 
research could focus on neurochemical alterations, neural 
circuits, and the long-term consequences (Nava et al. , 2006 ; 
Li et al. , 2008 ; Zhang et al. , 2008 ; Shi et al. , 2009 ) of drug 
withdrawal in zebrafi sh. The genomic profi ling of zebrafi sh 
withdrawal also provides further insights, including altered 
gene expression in the zebrafi sh brain following chronic 
drug treatment and withdrawal (Gerlai et al. , 2006 ; Kily et 
al. , 2008 ; Gerlai et al. , 2009 ). Sex differences reported for 
zebrafi sh withdrawal-related behaviors (Lopez Patino et al. , 
2008 b) parallel sex differences in human (Fox et al. , 2006 ) 
and rodent (Alves et al. , 2008 ; Butler et al. , 2009 ; Strong et 
al., 2009; Taylor et al. , 2009   ) withdrawal responses, there-
fore increasing populational and construct validity of these 
models.  

  Concluding remarks 

 Because drug abuse is a serious biomedical and societal 
problem, a better understanding of the mechanisms behind 
drug reward and abuse is needed to develop innovative and 
more effi cient treatments. Considerable efforts have recently 
been made to develop reliable and high-throughput assays 
for zebrafi sh behavior (Ninkovic and Bally -Cuif, 2006 ). 
Mounting evidence indicates that zebrafi sh cognition is com-
plex and often parallel the abilities of mammals (Stewart et 
al. , 2010 ). Because cognitive defi cits commonly accompany 
drug abuse (Figure  1 ) (Barker et al. , 2004 ; Kelley et al. , 2005 ; 
Rogers et al. , 2005 ; Rapeli et al. , 2006 ), the ability to quantify 
both affective and cognitive phenomena in zebrafi sh becomes 
important to study in relation to drug abuse phenotypes. 
Therefore, novel behavioral models focusing on reward, cog-
nitive, and affective phenotypes might be needed to more 
comprehensively model drug abuse in zebrafi sh. 

 We have previously emphasized the importance of promot-
ing both larval and adult zebrafi sh research (Stewart et al. , 
2010 ). The rich behavioral repertoire of the latter comple-
ments the sensitivity and high-throughput nature of the former 
(Rihel et al. , 2010 ). Although the genetic aspects of addiction 
have long been studied in mammalian organisms, zebrafi sh 
are also an ideal model for the use in forward genetics because 
they can be rapidly cloned, have a relatively short generation 
time, and have large progeny sizes that facilitate large-scale 
screens (Ninkovic and Bally -Cuif, 2006 ). Further analysis 
of the molecular and biochemical pathways underlying pre-

 Figure 5    Behavioral effects of 100   mg/l chronic chlordiazepoxide (CDP) in a 6-min novel tank test. 
 CDP was administered for 4   months, after which one group was withdrawn for 7   days (n  =  15 per each group). There was signifi cant group 
effect for latency to upper half (F (2, 44)   =  8.7,  p   <  0.001), transitions to top (F (2, 44)   =  5.2,  p   <  0.01), time in top (F (2, 44)   =  6.1,  p   <  0.01), and freezing 
duration (F (2, 44)   =  14.7,  p   <  0.001). * p   <  0.05; ** p   <  0.01; *** p   <  0.001;   #   p   =  0.05 – 0.1 (trend) between the groups; post-hoc Tukey test for signifi -
cant one-way analysis of variance data.    
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existing genetic differences in zebrafi sh, such as strain-depen-
dent variances, will advance our understanding of how drug 
abuse affects the brain (Loucks and Carvan , 2004 ). 

 The ease of genetic manipulations and potential for high-
throughput screening (He et al. , 2006 ; Hogan et al. , 2008 ; Kily 
et al. , 2008 ) represent the strengths of zebrafi sh-based models. 
However, zebrafi sh models of drug abuse have other important 
strengths, including behavioral complexity, three-dimension-
ality, robustness of drug-evoked phenotypes, and the ability 
to target a wide spectrum of neurobehavioral phenomena 
(Figure  1  and Table  1 ). Therefore, a more comprehensive pic-
ture is needed in the fi eld of zebrafi sh drug abuse research, with 
a fair balance between their behavioral and genetic strengths. 
The growing availability of new zebrafi sh strains through 
the Zebrafi sh International Resource Center (Sprague et al. , 
2008 ) and current progress of the Sanger Institute ’ s zebrafi sh 
genome project complements mounting support to zebrafi sh 
behavioral research from the National Science Foundation 
and recent cross-National Institutes of Health programs to 
develop new zebrafi sh genetic models and tools for their phe-
notyping. Together with multiple lesser initiatives, such as the 
international Zebrafi sh Neuroscience Research Consortium 
and Zebrafi sh Neurophenome Project (http://kalueffl ab.com/
znrc.html), this represents a positive and promising develop-
ment in the fi eld. 

 Finally, we acknowledge the importance of applying cross-
species and cross-domain modeling (Stewart et al. , 2010 ) 
to drug abuse-related phenotypes (Figure  1 ). For example, 
clinical drug abuse is highly comorbid with anxiety (Schneier 
et al. , 2010 ), depression (Perkins et al. , 2010 ), bipolar dis-
order (Swann , 2010 ), and psychoses (Gouzoulis -Mayfrank, 
2008 ). Therefore, animal models that simultaneously target 
these comorbidities could lead to valid clinically relevant 
experimental paradigms of drug abuse. Furthermore, because 
genetic variability infl uences addiction sensitivity (Loucks 
and Carvan , 2004 ), the overlay between behavioral pheno-
types and the propensity for, and the expression of, addic-
tive behavior must be considered. This approach could also 
improve the ability of animal models to mimic the entire path-
way of drug addiction, rather than a single point along the 
continuum (Warnick et al. , 2010 ). From this point of view, 
understanding the pathology of drug abuse and addiction will 
benefi t from implementation of innovative approaches and 
novel model species, such as zebrafi sh.   
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