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a b s t r a c t

The zebrafish (Danio rerio) is rapidly becoming a popular model species in behavioral neuroscience
research. Zebrafish behavior is robustly affected by environmental and pharmacological manipulations,
and can be examined using exploration-based paradigms, paralleled by analysis of endocrine (cortisol)
stress responses. Discontinuation of various psychotropic drugs evokes withdrawal in both humans and
rodents, characterized by increased anxiety. Sensitivity of zebrafish to drugs of abuse has been recently
eywords:
ebrafish
tress
nxiety

reported in the literature. Here we examine the effects of ethanol, diazepam, morphine and caffeine
withdrawal on zebrafish behavior. Overall, discontinuation of ethanol, diazepam and morphine produced
anxiogenic-like behavioral or endocrine responses, demonstrating the utility of zebrafish in translational
research of withdrawal syndrome.
ithdrawal
ovel tank test
ortisol

. Introduction

Drug withdrawal is a common problem among both self-
edicating abusers and chronically treated clinical patients

33,55,67]. Withdrawal syndrome has been reported for many
sychoactive drugs, including ethanol [42,69], benzodiazepines
2], opioids [31,41], cocaine [22], nicotine [60], caffeine [30],
hencyclidine [66], barbiturates [19] and cannabinoids [68].
linical symptoms of withdrawal include excessive perspiration,
ausea, headache, hallucinations and, most commonly, anxiety
13,14,29,48,56,61,65,71].
In line with clinical findings, published rodent data describe
nxiety-like behaviors evoked by acute withdrawal from ethanol
54], opioids [21,28,57], amphetamine [40] and nicotine [34]. In
ddition to robust behavioral effects of a single period of with-
rawal, repeated administration and cessation of a drug treatment
vokes strong withdrawal-like effects [32]. For example, increased

∗ Corresponding author at: Department of Pharmacology, Room 3731, Tulane Uni-
ersity Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
el.: +1 504 988 3354; fax: +1 504 988 5283.
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© 2009 Elsevier B.V. All rights reserved.

anxiety-like behavior was reported in rodents following repeated
withdrawal from ethanol [70] and morphine [72]. The importance
of understanding neurobiological mechanisms requires innovative
approaches to modeling withdrawal syndrome, including novel
experimental paradigms, new biomarkers and alternative model
species [18,51,58].

The zebrafish (Danio rerio) has gained prominence in recent
years as a useful model species in experimental neuroscience
and biological psychiatry [9,17,27,45]. Recent studies also sug-
gest the potential of zebrafish as a model for drug reward and
addiction [53]. For example, rewarding properties of different
drugs, including amphetamine [53], salvinorin A [9], cocaine
[15], morphine and heroin [4], have been reported in zebrafish.
Mounting anatomical and genomic evidence further supports this
notion, as zebrafish dopaminergic projections to the basal fore-
brain parallel the mammalian mesolimbic system implicated in
drug addiction [16]. Likewise, chronic treatment of zebrafish with

ethanol and nicotine alters the expression of multiple CNS genes,
some of which have been identified as components of the addiction
pathways in mammals [39]. Moreover, some evidence suggests
sensitivity of zebrafish to drug withdrawal. For example, ethanol
discontinuation disrupts zebrafish shoaling behavior [26], whereas

http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:avkalueff@gmail.com
dx.doi.org/10.1016/j.bbr.2009.12.004
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ocaine withdrawal evokes marked alterations in their locomotion
45,46].

In addition to behavioral markers of withdrawal syndrome, both
linical and pre-clinical data implicate endocrine dysregulation
n drug abuse and withdrawal [8,38,47,57]. Withdrawal-evoked
nxiety strongly correlates with elevated blood or salivary cortisol
n patients with heroin [44,59], opioid [6,73], nicotine [12], cocaine
24] and ethanol [37,50] addiction. Similarly, increased levels of
rain and plasma corticosterone have been reported in rodents
ollowing morphine [57] or ethanol withdrawal [8], respectively.
aken together, this indicates that glucocorticoid abnormali-
ies may represent important biological markers of withdrawal
yndrome.

Our study aims to further validate the utility of zebrafish in
odeling drug withdrawal syndrome. Here, we examine anxiety-

ike behavioral and cortisol responses elicited in adult zebrafish by
ithdrawal from a wide spectrum of psychotropic drugs, including

thanol, diazepam, caffeine, and morphine.

. Methods

.1. Animals and housing

Adult 4–6-month-old male and female zebrafish (∼50:50%) of heterozygous
wild type” short-fin strain were obtained from local commercial distributors (Petco,
ockville, MD and 50 Fathoms, Metairie, LA). All fish were given at least 10 days to
cclimate to the laboratory environment and housed in groups of 20–30 fish per 40-L
ank. All tanks were filled with deionized water before introducing the fish. The room
nd water temperatures were maintained at 25–27 ◦C. Illumination (1010 ± 88 lx)
as provided by ceiling-mounted fluorescent light tubes on a 12-h cycle (on: 6.00 h,

ff: 18.00 h). Fish were fed Tetramin Tropical Flakes (Tetra USA, VA). All fish used
n this study were experimentally naïve. Following behavioral testing, the animals

ere euthanized in 500 mg/L Tricaine (Sigma–Aldrich, USA), immediately dissected
nd stored at −80 ◦C for further physiological analysis.

.2. Pharmacological manipulations

Using a total of 265 fish, our study examined the effects of ethanol (0.3% EtOH
/v, Pharmco-AAPER, USA), diazepam (72 mg/L, Sigma–Aldrich, USA), morphine
1.5 mg/L single withdrawal, 1.0 mg/L repeated withdrawal, Mallinckrodt, MO) and
affeine (50 mg/L, Sigma–Aldrich, USA). Fish were treated chronically with drugs in
ome tanks before inducing withdrawal. Drugs were dissolved in tank water before

ntroducing zebrafish. All home tanks had specially designed glass covers, to prevent
vaporation of water and drugs. Ethanol, morphine and caffeine were administered
hronically for 1 week, and diazepam was administered for 2 weeks. The doses and
he duration of chronic treatment and withdrawal were selected based on our own
ilot data confirming the lack of non-specific toxic/sedative effects of these drugs.
ur choice of withdrawal intervals was also based on known biological half-lives of
rugs used here (diazepam � morphine, caffeine > ethanol) and was similar to those
sed in other withdrawal studies in zebrafish [45,46].

For single (acute) withdrawal experiments, fish in the ethanol and caffeine
roups were treated for 1 week in their respective home tanks, which were then
lled with untreated water for 12 h before behavioral testing. Fish in the diazepam
ohort were treated chronically for 2 weeks, followed by placement in drug-free
ater for 72 h prior to testing, to evoke withdrawal. For morphine withdrawal, fish
ere treated chronically for 1 week and then placed in drug-free water for 48 h.

Repeated withdrawal trials were performed in this study on zebrafish treated
ith ethanol or morphine. After 1-week chronic treatment, fish were placed into

xposure tanks with fresh untreated water for 3 h at a time, twice per day for 1
eek prior to testing. Drug-free control fish were placed into treated water with no
rugs added, and chronic drug treatment groups were placed into water containing
oncentrations of the drug identical to the treatment. Following 3-h exposure trials,
nimals were returned to their respective drug-treated home tanks. After 1 week
f repeated withdrawal, fish were taken from home tanks and placed in exposure
anks for a final 3-h withdrawal session prior to behavioral testing.

.3. Apparatus and behavioral testing

Behavioral testing was performed using the novel tank diving test, repre-
enting a 1.5-L trapezoidal tank (15.2 cm height × 7.1 cm width × 27.9 cm top

ength × 22.5 cm bottom length; Aquatic Habitats, Apopka, FL) maximally filled

ith aquarium-treated water. Illumination of the novel tank area was similar
1170 ± 68 lx) to that in the animal holding room. Novel tanks rested on a level,
table surface and were divided into two equal horizontal portions, marked by a
ividing line on the outside walls. Behavioral testing occurred between 10.00 and
7.00 h. Once each fish was individually transferred to a novel tank, its swimming
esearch 208 (2010) 371–376

behavior was recorded for 6 min by two trained observers (inter-rater reliability
>0.85) recorded the following behavioral endpoints: latency (s) to reach the upper
half (top) of the tank, time spent in the top (s), number of transitions (entries) to
the top, number of erratic movements, and number and duration (s) of freezing
bouts. Erratic movements were defined as sharp changes in direction and/or veloc-
ity and repeated rapid darting behaviors. Freezing was defined as a total absence
of movement, except for the gills and eyes, for 2 s or longer. Collectively, a reduc-
tion in exploration (i.e., longer latency to reach the top half, fewer entries to the
top, more freezing) or elevated erratic movements represent behavioral profiles
indicative of high stress and anxiety [3,43]. We also calculated the average top entry
duration (total time spent in top divided by the number of entries), as well as the
top:bottom ratio for time spent by each fish, as additional endpoints reflecting the
level of zebrafish anxiety (both indices are generally lower in anxious fish) [17].

2.4. Cortisol assay

In a separate study using 147 zebrafish, we analyzed their endocrine responses
to single drug withdrawal, including chronic diazepam, morphine, ethanol and caf-
feine treatments (administered as described previously). The cortisol extraction
procedure was performed using a modified protocol developed in our laboratory
[17]. Briefly, individual body samples obtained from experimental and control
cohorts were homogenized in 500 �L of ice-cold 1× PBS buffer. The homogeniz-
ing rotor blade was then washed with an additional 500 �L of PBS and collected in a
2-mL tube containing the homogenate. Samples were transferred to glass extract-O
tubes and cortisol was extracted twice with 5 mL of diethyl ether (Fisher Scientific,
USA). After ether evaporation, the cortisol was reconstituted in 1 mL of 1× PBS. To
quantify cortisol concentrations, ELISA was performed using a human salivary cor-
tisol assay kit (Salimetrics LLC, State College, PA). ELISA plates were measured in a
VICTOR-WALLAC plate reader using the manufacturer’s software package. Whole-
body cortisol levels were determined using a 4-parameter sigmoid minus curve fit
based on the absorbencies of standardized concentrations, and presented as relative
concentrations per gram of body weight for each fish [17].

2.5. Statistical analysis

All experimental data was analyzed using the Kruskal–Wallis test, followed by
a post-hoc Tukey HSD test, for significance between the groups. Data was expressed
as mean ± SEM, and significance set at P < 0.05.

3. Results

As can be seen in Fig. 1A, single diazepam withdrawal produced
mild anxiogenic responses in zebrafish, as the Kruskal–Wallis test
revealed significant group effect only for the number of erratic
movements (H(2, 30) = 6.3, P < 0.05), and a trend for the number of
entries to the top (H(2, 30) = 5.5, P = 0.06). The withdrawal group
produced significantly more erratic movements vs. the chronic
drug group, which also showed a trend towards more transitions to
the top, indicative of reduced anxiety. However, there were no dif-
ferences between the three groups in the latency to top, time spent
in top, average entry duration, freezing frequency and duration,
as well as top:bottom duration ratio (NS). Likewise, no significant
effects on zebrafish behavioral endpoints were observed following
single ethanol withdrawal (Fig. 1B), as well as single caffeine and
morphine withdrawal (data not shown).

In contrast, repeated morphine withdrawal produced
robust anxiogenic effects on zebrafish behavior (Fig. 2A). The
Kruskal–Wallis test revealed significant effects for the latency
to enter the top (H(2, 41) = 5.8, P < 0.05), time spent in top (H(2,
41) = 7.7, P < 0.05), top:bottom duration ratio (H(2, 41) = 7.7,
P < 0.05), average entry duration (H(2, 41) = 9.4, P < 0.01), and the
number of erratic movements (H(2, 41) = 8.5, P < 0.05). There were
also trends for the number of entries to the top (H(2, 41) = 5.2,
P = 0.07) and freezing duration (H(2, 41) = 4.3, P = 0.1), but not
for the number of freezing bouts (NS). As shown in Fig. 2A, the
repeated morphine withdrawal cohort exhibited a significantly
longer latency to enter the top, had fewer transitions to the top

(although not significantly), and spent significantly less time in
top, compared to the control group. Both average entry duration
and top:bottom ratio were significantly reduced in the withdrawal
group. Additionally, the repeated withdrawal group had signifi-
cantly more erratic movements (compared to both control and
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ig. 1. Behavioral effects of single withdrawal from diazepam (A) and ethanol (B)
rom chronic diazepam (72 mg/L for 2 weeks); B – 12-h withdrawal from chronic e
trend); post-hoc Tukey test for significant Kruskal–Wallis data. Signs above data
ignificance/trends between the respective experimental groups.

hronic drug groups), along with generally higher (although not
ignificantly) freezing frequency and duration.

In the repeated ethanol withdrawal experiment (Fig. 2B), we
lso found significant anxiogenic-like effects for the latency to enter
he top (H(2, 44) = 6.3, P < 0.05), time spent in top (H(2, 44) = 9.9,
< 0.01), top:bottom duration ratio (H(2, 44) = 10.0, P < 0.01), aver-
ge entry duration (H(2, 44) = 9.8, P < 0.01), the number of top
ntries (H(2, 44) = 6.8, P < 0.05) and freezing duration (H(2, 44) = 6.2,
< 0.05). The Kruskal–Wallis test also revealed trends for the num-
er of freezing bouts (H(2, 44) = 5.8, P = 0.06) and erratic movements
H(2, 44) = 0.94). Compared to the control group, the repeated
ithdrawal group showed a trend to a longer latency to enter

he upper half of the novel tank, fewer transitions to the upper
alf (NS), significantly less time spent in the top, reduced aver-
ge entry duration, and a trend to lower top:bottom duration ratio
Fig. 2B). Furthermore, while erratic movements were unaltered

n all groups, we observed significantly higher frequency and dura-
ion of freezing bouts, collectively indicating increased anxiety-like
ehavior in the withdrawal group.

Finally, cortisol levels were affected by drug withdrawal, includ-
ng a significant treatment effects in ethanol withdrawal (H(2,
ents in adult zebrafish tested in the novel tank diving test. A – 72-h withdrawal
l (0.3%, v/v for 1 week); data are presented as mean ± SEM; *P < 0.05, #P = 0.05–0.1
dicate significance/trends vs. control group, signs above horizontal lines indicate

41) = 6.6, P < 0.05), a trend (H(2, 45) = 5.2, P = 0.07) for single mor-
phine withdrawal, and a similar, although not significant, increase
in single diazepam (NS) withdrawal group (Fig. 3). Overall, cortisol
levels in these experiments were higher in the withdrawal groups
compared to the other two cohorts. However, there were no signif-
icant differences on whole-body cortisol levels between the three
groups in the single caffeine withdrawal experiment.

4. Discussion

In line with earlier reports on the behavioral effects of cocaine
[45,46] and ethanol [26] withdrawal, our results demonstrate the
ability of different psychotropic drugs to elicit withdrawal-related
phenotypes in zebrafish. Single withdrawal from diazepam (Fig. 1A)
produced mild anxiety-like behaviors in zebrafish, and a slight ele-
vation of cortisol levels (Fig. 3). In the acute ethanol withdrawal

paradigm, despite the lack of overt behavioral responses (Fig. 1B),
cortisol levels were significantly elevated in the withdrawal cohort
(Fig. 3), suggesting higher levels of stress and anxiety in the
withdrawal fish. Although anxiety evoked by caffeine withdrawal
has been reported in both humans [20] and rodents [5,35,52,63],
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ig. 2. Anxiogenic effects of repeated withdrawal (two 3-h withdrawal periods da
n adult zebrafish tested in the novel tank diving test. Data are presented as mea
ruskal–Wallis data. Signs above data bars indicate significance/trends vs. control
xperimental groups.

ur study failed to establish behavioral or endocrine alterations
n zebrafish following single caffeine withdrawal. These results

uggest that zebrafish models may be less sensitive to caffeine with-
rawal, or that other paradigms and methodological approaches
ay be needed to better mimic this state in zebrafish.
Although single morphine withdrawal did not produce sig-

ificant behavioral effects in this study, cortisol levels were

ig. 3. Endocrine stress responses (whole-body cortisol, ng/g fish) in adult zebrafish to si
or details), chronic morphine (24-h withdrawal from 1.5 mg/L morphine for 1 week) an
s mean ± SEM; *P < 0.05, post-hoc Tukey test for significant Kruskal–Wallis data. Asteri
orizontal lines indicate significance/trends between the respective experimental groups
r 1 week) from chronic 1-week morphine (A; 1.0 mg/L) and ethanol (B; 0.3%, v/v)
M, *P < 0.05, **P < 0.005, #P = 0.05–0.1 (trend); post-hoc Tukey test for significant
, signs above horizontal lines indicate significance/trends between the respective

significantly elevated in the withdrawal group (Fig. 3), indicating
the possibility of higher anxiety in zebrafish under acute morphine

withdrawal. The lack of strong behavioral effects in this exper-
iment may be attributed to tolerance (particularly common for
morphine), since zebrafish were exposed to the same daily dose for
1 week. Therefore, future studies may require gradually increasing
the dose of daily morphine treatment, to counterbalance tolerance.

ngle withdrawal from chronic diazepam, chronic ethanol (see Figs. 1 and 2 legends
d caffeine (12-h withdrawal from chronic 50 mg/L for 1 week). Data are presented
sks above data bars indicate significance/trends vs. control group, asterisks above
.
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owever, using the repeated withdrawal protocol, we were able
o elicit increased anxiety-like behaviors (Fig. 2A), generally
onsistent with known anxiogenic-like effects of withdrawal from
his drug [31,41].

Overall, there are several limitations of the present
tudy, including the complexity of withdrawal phenotypes
13,14,29,48,56,61,65,71] and the difficulty with modeling with-
rawal syndrome in animals [7,10,36]. Therefore, future studies
sing zebrafish models may focus on neurochemical alterations,
eural circuits, as well as clinically relevant long-term conse-
uences [44,49,59,73], of drug withdrawal. Albeit not explored
ere in detail, sex dimorphism in withdrawal-related behavior
lso warrants further investigation. This aspect of pathogenesis
ecomes particularly important, since sex differences in human
23] and rodent [1,11,62,64] withdrawal responses are strongly
upported by recent zebrafish data [26,27]. Moreover, the strain
ifferences also play a role in modulating zebrafish behavior (e.g.,
efs. [17,25]), and may influence their withdrawal phenotypes.
ince only one animal strain was used here, further analyses com-
aring drug withdrawal responses in different zebrafish strains
ay be necessary. Finally, altered gene expression in the zebrafish

rain following chronic drug treatment and withdrawal [26,27,39]
upports genomic profiling of zebrafish withdrawal as a promising
irection of research in this field.

In summary, varying anxiogenic effects in zebrafish were pro-
uced by diazepam, morphine and ethanol withdrawal, as well
s by repeated morphine and ethanol withdrawal (Figs. 1 and 2).
ingle caffeine withdrawal did not evoke anxiety-like responses,
uggesting that different drugs have the potential to evoke dif-
erent withdrawal states in zebrafish. Therefore, the modeling of
ithdrawal syndrome elicited by other drugs of abuse (e.g., nico-

ine, heroin, amphetamine and barbiturates) merits further study
sing zebrafish models.

The use of a human salivary cortisol assay provided physiologi-
al measures of the endocrine stress response in zebrafish (Fig. 3),
enerally consistent with their anxiety-like behaviors. Zebrafish
ortisol responses have already been shown to correlate with
nxiety behavior evoked by different non-pharmacological stres-
ors [3,17]. Here we demonstrated that withdrawal may modulate
ebrafish cortisol levels. Consistent with glucocorticoid dysreg-
lations frequently reported in human and animal studies of
ithdrawal syndrome [8,37,47,57], our findings implicate cortisol

bnormalities as an emerging endophenotype of drug withdrawal
n zebrafish.

Our study also showed that zebrafish withdrawal-evoked
ehaviors can be easily distinguished and profiled using the novel
ank diving test as a simple and high-throughput screen. How-
ver, adding new behavioral endpoints and using novel observation
ethods, such as automated video-tracking systems, may foster

urther withdrawal research in zebrafish. Overall, paralleling the
nxiogenic effects of drug withdrawal in humans and rodents, our
esearch strongly supports the utility of zebrafish to study the neu-
obiology of drug abuse and withdrawal.
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