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a b s t r a c t

Vitamin D insufficiency has been reported to be associated with increased blood cholesterol concentra-
tions. Here we used two strains of VDR knock-out (VDR-KO) mice to study whether a lack of vitamin D
action has any effect on cholesterol metabolism. In 129S1 mice, both in male and female VDR-KO mice
serum total cholesterol levels were significantly higher than those in wild type (WT) mice (20.7% (P = 0.05)
and 22.2% (P = 0.03), respectively). In addition, the serum high-density lipoprotein-bound cholesterol
(HDL-C) level was 22% (P = 0.03), respectively higher in male VDR-KO mice than in WT mice. The mRNA
expression levels of five cholesterol metabolism related genes in livers of 129S1 mice were studied using
quantitative real-time PCR (QRT-PCR): ATP-binding cassette transporter A1 (ABCA1), regulatory element
binding protein (SREBP2), apolipoprotein A-I (ApoAI), low-density lipoprotein receptor (LDLR) and liver X
receptor beta (LXR�). In the mutant male mice, the mRNA level of ApoAI and LXR� were 49.2% (P = 0.005)
and 38.8% (P = 0.034) higher than in the WT mice. These changes were not observed in mutant female mice,

but the female mutant mice showed 52.5% (P = 0.006) decrease of SREBP2 mRNA expression compared to
WT mice. Because the mutant mice were fed with a special rescue diet, we wanted to test whether the
increased cholesterol levels in mutant mice were due to the diet. Both the WT and mutant NMRI mice
were given the same diet for 3 weeks before the blood sampling. No difference in cholesterol or in HDL-C
between WT and mutant mice was found. The results suggest that the food, gender and genetic back-
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. Introduction

Vitamin D is produced in the skin through a photolytic reac-
ion of 7-dehydrocholesterol induced by ultraviolet B radiation
t 290–315 nm. The vitamin D formed in the skin or absorbed

rom diet is hydroxylated in the liver to 25-hydroxyvitamin D and
urther hydroxylated in the kidney to 1,25-dihydroxyvitamin D (cal-
itriol) [1]. Calcitriol is the most active ligand for vitamin D receptor
VDR) and after binding to VDR performs its biological functions
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eptember 2008).
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olesterol metabolism. Although VDR seems to regulate some of the genes
lism, its role in the regulation of serum cholesterol seems to be minimal.

© 2009 Elsevier Ltd. All rights reserved.

such as control of calcium homeostasis, cell proliferation and dif-
ferentiation [2,3]. Lack of sunlight and vitamin D deficiency has
been suggested to be associated with an increased blood choles-
terol concentration [4]. In postmenopausal women with hormone
replacement therapy, vitamin D seems to affect serum lipid lev-
els [5]. Therefore we were interested to study the effect of VDR
knock-out in mice on their serum cholesterol level.

SREBP2 is a transcription factor which down-regulates ABCA1
[6] but it increases LDLR expression [7] and is involved in choles-
terol synthesis [8]. Many of the LXR target genes are also involved
in cholesterol and fatty acid metabolism pathways [9–11]. Thus,
LXRs form heterodimer with RXR and act as cholesterol sensors as
well as regulators of genes for cholesterol efflux and lipid transport

to maintain cholesterol homeostasis [12–15]. Major cholesterol-
related targets of LXRs include the ATP-binding cassette transporter
family members such as ABCA1 [16,17], which is mutated in Tangier
disease. A characteristic feature of these patients is extremely low or
absent HDL-C and reduced total cholesterol [18–20]. The main role

http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:Jinghuan.Wang@uta.fi
dx.doi.org/10.1016/j.jsbmb.2009.01.003
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f ABCA1 is the mediation of the efflux of excess cholesterol from
acrophages and fibroblasts in the sub-endothelial space to accep-

ors such as HDL and ApoAI [21], which in the circulation interacts
rst with serum phospholipids and forms nascent discoidal HDL
ndHDL), which triggers cholesterol efflux [21]. The externalized
holesterol is incorporated into ndHDL and further modified. The
nal products, cholesteryl esters, are delivered back to the liver via
DLR, converted to bile salts, and eliminated through the gastroin-
estinal tract [21]. LDLR knock-out mice showed altered lipid profile
22]. Therefore, in the present study, we tested the mRNA expres-
ion of ABCA1, ApoAI, LDLR, LXR� and SREBP2 from both wild type
nd mutant mice.

. Materials and methods

.1. Mouse breeding, housing and feeding

VDR-KO mice 129S1 were produced from the line initially
enerated in the University of Tokyo [23], which have been stud-
ed in our laboratory [24–26]. NMRI mice were purchased from
arlan, Nederland. They originate from Swiss mice in the US
rought from Lausanne, Switzerland, in 1926 by Clara Lynch. In
937 the mice came from Lynch to Poiley and were inbred by
oiley known as NIH/PI. At F51 they went to US Naval Med-
cal Research Institute and thus known as NMRI. In 1955, the

ice went to Bundes-Forschungsanstalt für Viruskrankheiten and
n 1958, to Central Institute for Laboratory Breeding, Hannover.
n 1981, they came from Central Institute for Laboratory Breed-
ng, Hannover to Winkelmann (now Harlan Winkelmann). In
998, they came from Harlan Winkelmann to Harlan Nederland
www.harlaneurope.com), known as HsdWin:NMRI mice, which
re abbreviated as “NMRI mice” in the text. Studies using this strain
f mice have been reported [27,28]. All the mice were housed
n the University of Tampere Laboratory Animal facility with a
2:12-light:dark cycle. The management and experimental proce-
ures in this study were approved by the Ethical Committee of the
niversity of Tampere and performed according to EU legislation.
ge-matched wild type and VDR-KO mice were genotyped and used

n this study. Mice were 6.5–16 months old. The numbers of 129S1
ice used in the study were, male KO 8 and male WT 9; female KO
and female WT 5. The numbers of NMRI mice were, male KO 2

nd WT 10, female KO 7 and WT 11. The VDR-KO mice were fed with
special diet containing 2% Ca, 1.25% P and 20% lactose (Lactamin
B, Sweden), to normalize their mineral metabolism. In the studies
ith NMRI mice, WT mice were switched from normal foods (0.9%
a, 0.7% P and 20% lactose) to special foods 3 weeks before sample
ollection.

.2. Serum sample preparation and tissue sample collection

Mice were sacrificed by carbon dioxide and blood was immedi-
tely taken by heart puncture. Blood was allowed to clot, followed
y centrifugation at 3000 rpm for 10 min. The serum was stored
t −70 ◦C for further analysis. Small pieces of liver and kidney tis-
ues were taken and dropped into RNAlater (Ambion), and stored
t −20 ◦C for later RNA isolation.

.3. Measurement of total cholesterol and HDL-C
Total cholesterol and HDL-C concentrations were measured
sing a photometric CHOD-PAP (Ecoline® S+ Cholesterol, DiaSys
iagnostic Systems GmbH, Germany). HDL-C was determined

rom the clear supernatant after precipitation of serum apoB-
ontaining lipoproteins with 10% polyethylene glycol (final
oncentration).
& Molecular Biology 113 (2009) 222–226 223

2.4. RNA extraction and real-time quantitative PCR

Liver tissue slices was dropped into ice-cooled trizol (Invitro-
gen, Carlshad, USA) and homogenized on ice. Total cellular RNA
was isolated with TRIzoL reagent following the instructions from
the manufacturer. The RNA concentration was calculated from
absorbance at 260 nm in a GeneQuant II (Pharmacia Biotech, USA)
and A280/A260 was measured to verify the purity of the RNA.
The ratio of all the RNA samples fell in 1.9–2.5. Randomly selected
RNA samples were subjected to denaturing gel electrophoresis.
The ratio of the intensity of the 28S band and that of the 18S band
was 1.5–2.0. cDNA was synthesised by using High Capacity Archive
Kit (Applied Biosystems, USA). Real-time PCR were performed
in ABI PRISM 7000 Detection System (Applied Biosystems, USA)
using SYBR Green PCR Master Mix (Applied Biosystems). The
programs for the amplification were as following: activation of
polymerase at 95 ◦C for 10 min, followed by 45 cycles of denat-
uration at 95 ◦C for 15 s and annealing/extension at 60 ◦C for
1 min. The analysis of dissociation curves was always performed
after 45 cycles. Primers were designed by using Primer Express
v2.0 software (Perkin-Elmer Applied Biosystems, Foster City, CA).
BLASTn searches were performed to ensure that the primers were
gene specific. The primers are mABCA1 (NM 013454) forward 5′-
CAACCCCTGCTTCCGTTATC-3′, reverse 5′-GACCTTGTGCATGTCCTT-
AATGC-3′; mApoAI (NM 009692) forward 5′-CTCCTCCTTGGGCCA-
ACA-3′, reverse 5′-TGACTAACGGTTGAACCCAGAGT-3′; mLDLR
(NM 010700) forward 5′-TGTGAAAATGACTCAGACGAACAA-3′, re-
verse 5′-GGAGATGCACTTGCCATCCT-3′; mLXR� (Nr1h2) (NM
009473) forward 5′-GATCCTCCTCCAGGCTCTGAA-3′, reverse 5′-
GCGCTCAGGCTCATCCT-3′; mSREBP2 (NM 033218) forward

5′-GTGCGCTCTCGTTTTACTGAAGT-3′, reverse 5′-GTATAGAAGACGG-
CCTTCACCAA-3′. Mouse gene ˇ-actin (NM 007393) was used
as endogenous control. Primers for mˇ-actin were as follows:
forward: 5′-GCTTCTTTGCAGCTCCTTCGT-3′ reverse: 5′-CCAGC-
GCAGCGATATCG-3′.

2.5. Statistical analysis

Data of cholesterol and HDL-C level as well as real-time PCR
are expressed as the mean value ± standard error. Significance was
assessed using the Mann–Whitney U test. *p ≤ 0.05 was considered
as significant, **p < 0.001 as highly significant and p > 0.05 as not
significant (NS).

3. Results

3.1. Total cholesterol and HDL-C serum concentration

The mean total cholesterol concentration was significantly
higher in 5 female mutant mice in comparison with that of 5 female
wild type mice (Table 1). In female mice, there was no statistically
significant difference in the serum HDL-C. In male mice, both total
cholesterol and HDL-C concentrations were significantly lower in
WT mice than in KO mice (Table 1).

3.2. ABCA1, ApoAI, LDLR, LXRˇ and SREBP2 mRNA expression in
the liver

QRT-PCR data show a significant difference in ApoAI, LXR� and
SREBP2 expressions between WT and mutants (Fig. 1A and B).

The relative mRNA levels were 1.0 ± 0.2 and 0.7 ± 0.1 (P = 0.005) for
ApoAI, 1.1 ± 0.3 and 0.8 ± 0.2 (P = 0.034) for LXR� in mutant and
wild type male mice, respectively; 0.9 ± 0.1 vs 1.4 ± 0.3 (P = 0.006)
for SREBP2 in mutant and wild type female mice, respectively. The
female wild type and mutant mice do not show difference in the

http://www.harlaneurope.com/
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Table 1
Serum cholesterol and HDL-C level in wild type and VDR knock-out 129S1 mice.

WT VDR-KO P value

Female
Total cholesterol 2.14 ± 0.09 2.62 ± 0.15 0.028
HDL-C 1.23 ± 0.06 1.35 ± 0.04 0.209
Nr of observations 5 5

Male
Total cholesterol 2.54 ± 0.07 3.1 ± 0.27 0.054
HDL-C 1.69 ± 0.05 2.04 ± 0.16 0.034
Nr of observations 9 8

Serum cholesterol and HDL-C levels of wild type and VDR knock-out mice were
determined. Data were analyzed by Mann–Whitney U test and presented as mean
value ± standard error. The unit used in the table is mmol/L (SI unit). To convert
values from SI units to conventional units, divide by the conversion factor. For
cholesterol and HDL-C, the convert factor is 0.0259.

Fig. 1. ABCA1, ApoAI, LDLR, LXR� and SREBP2 expression in the liver of wild
type and VDR knock-out mice. (A) Female and (B) male. Data represented mean
value ± standard error from quantitative real-time PCR results and statistically ana-
lyzed by Mann–Whitney U test. Mouse �-actin was used as housekeeping gene for
the calculation of relative corresponding gene expression.

Table 2
Serum cholesterol and HDL-C level in wild type and VDR knock-out NMRI mice.

Female Male P value

WT
Total cholesterol 3.71 ± 0.08 5.15 ± 0.09 0.00108
HDL-C 2.76 ± 0.06 4.14 ± 0.07 0.00011
Nr of observations 11 10

VDR-KO
Total cholesterol 3.85 ± 0.07 5.19 ± 0.03 0.0421
HDL-C 2.77 ± 0.05 4.1 ± 0.07 0.01371
Nr of observations 7 2

3 weeks before sample collection, both wild type and VDR-KO NMRI mice were fed
with special foods containing high calcium. Serum cholesterol and HDL-C levels of

both types of mice were determined. Data were analyzed by Mann–Whitney U test
and presented as mean value ± standard error. The unit used in the table is mmol/L (SI
unit). To convert values from SI units to conventional units, divide by the conversion
factor. For cholesterol and HDL-C, the convert factor is 0.0259.

expression of ApoAI nor LXR�. There is no significant difference of
the expression of ABCA1 and LDLR in mutant and wild type mice.

3.3. The effect of food

We used NMRI strain of VDR-KO mice. Both the WT and mutant
mice were given the same foods containing 2% Ca, 1.25% P and 20%
lactose for 3 weeks before blood sampling. No difference in choles-
terol or in HDL-C between WT and mutant mice was found, but a
clear sex difference was observed (Table 2).

4. Discussion

This is the first direct evidence that a nonfunctional VDR can
increase serum total cholesterol concentration in both female and
male mice. Also HDL-C was increased but only in the male VDR-KO
mice. In male animals, the higher total cholesterol level in KO mice
was due to increase in both HDL-C and apoB-containing lipoprotein
cholesterol. It seems that the mutation of VDR in male and female
mice have different effects on lipids, which is consist with relative
gene expression changes. In male lacking of functional VDR, ApoAI
and LXR� expression levels were increased, but not in females.
In VDR-KO females, expression of SREBP2 was decreased. It has
been reported that calcitriol inhibits ApoAI mRNA and protein in
the human hepatoma cell line HepG2 VDR- and VDRE-dependently
[29]. In our study, male mutant mice had a higher liver ApoAI
mRNA expression. Thus, it is possible that VDR knock-out results
in a higher ApoAI level, which in turn, increased cholesterol efflux
and hence HDL-C.

In mammals there are two forms of LXRs, LXR�/NR1H3 and
LXR�/NR1H2. The expression of LXR� is restricted to kidney,
intestine, spleen, and adrenals, with the highest expression levels
in the liver [30,31] whereas the LXR� is ubiquitously expressed
[32,33]. Inhibition of LXR� signaling by vitamin D receptor has
been reported [34]. Because of the high expression of LXR� in the
liver, its role in lipid metabolism has been extensively studied. A
search in PUBMED with “LXR� + lipid” and “LXR� + lipid” revealed
125 and 792 articles, respectively. Thus, in the present study we
investigated the LXR� expression. Interestingly, male mutant mice
have higher levels of LXR� mRNA expression. As one of the tar-
get genes for LXR�, it has been shown that an over-expression of
ABCA1 in liver is associated with increased HDL-C levels in trans-
genic mice and ABCA1 knock-out leads to HDL-C deficiency [35].

Our quantitative real-time PCR results show that the liver ABCA1
mRNA expression levels are unchanged. This suggests factors other
than ABCA1 are involved in the serum lipid changes of the mutant
mice. Given the role of LXR� for activating not only ABCA1, but
also ABCG1 [36], ABCG5 [37] and ABCG8 [38] it is possible that the
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XR� exerts its effects on HDL-C levels by activating other choles-
erol exporters. In addition, vitamin D inhibits LXR� signaling [34],
hich thus in VDR-KO mice might be enhanced and consequently

ontributes to increase ABCG1, ABCG5 and ABCG8 expression
s well.

SREBPs are synthesized as precursors complexed with SCAP in
he membranes of the endoplasmic reticulum (ER) [39]. When cells
re depleted of sterols, SCAP escorts SREBPs from ER to Golgi where
he SREBPs are cleaved [40,41] to release the bHLH-Zip domain
hich travels to the nucleus where it activates genes whose prod-
cts play roles in the lipid synthesis and uptake [42], including
holesterol [43]. Our results showed that VDR mutant female mice
ave lower levels of SREBP2 but higher level of cholesterol. Choles-
erol has been shown directly bind to sterol-sensing domain of
CAP in vitro [44]. The binding of cholesterol to SCAP elicits a
onformational change in SCAP causing SCAP to bind to Insigs,
ndoplasmic reticulum retention proteins that abrogate movement
f the SCAP–SREBP complexes to the Golgi apparatus for SREBP
rocessing and activation [44–47]. It has been reported murine

nsig-2 promoter harbors a positive vitamin D response element
48]. SREBP2 is a transcription factor which inhibits ABCA1 [6] but
timulate LDLR [7] expression. In the present study, mutant female
ice showed lower SREBP2 expression but no changes in ABCA1

or LDLR were observed.
It seems that the special rescue diet of the mutant mice has a

trong effect on the serum lipid levels. In our experiments using
MRI mice, both wild type and mutant mice were fed with spe-
ial food containing 2% Ca, 1.25% P and 20% lactose 3 weeks before
he sampling. No significant difference in cholesterol and/or HDL-

level between wild type and mutant mice was found. Because
here were only 2 NMRI male VRD-KO mice available for the stud-
es, it remains unclear whether this is because of the effects of
ood or the strain of the mice. On the other hand, this might imply
hat the effect of VDR knock-out on cholesterol metabolism can
e rescued by diet. Investigations of all the four VDR-KO mice
odels to date demonstrated that the lack of functional VDR devel-

ps hypocalcemia, rickets, osteomalacia, hyperparathyroidism and
lopecia [23,49–51]. Normalization of ionized calcium levels by
he special diet normalized these phenotypes, except for alopecia
52,53].

A sex difference of cholesterol and HDL-C was found in both
29S1 and NMRI strains in wild type and mutant mice. Choles-
erol changes in postmenopausal women [54] and in rodents after
variectomy [55,56] are due to a lack of estrogen. Kamei et al. [57]
dentified changes of gene expression in lipid metabolism includ-
ng a decrease of SREBP1 in ovariectomized mice. Similarly, here

e found that SREBP2 expression was lower in VDR-KO female
ice. Previously it was reported that VDR-KO female mice devel-

ped uterine hypoplasia in the post-weaning stage due to a lack of
strogen synthesis in the mutant ovaries [23]. Our present study
how that the VDR background has different effects in female
nd male mice, where nonfunctional VDR can increase serum
otal cholesterol concentration in both female and male mice
ut HDL-C was increased only in the male VDR-KO mice. This
ifference might be due to impaired estrogen production in KO
emale mice.

In conclusion, our study suggests that lack of the functional
DR may lead to an increased serum cholesterol and HDL-C.

n addition, this can be partially explained by changes in the
xpression of cholesterol metabolism related genes such as ApoAI,
XR and SREBP2. Vitamin D deficiency may therefore contribute

o cardiovascular diseases such as atherosclerosis [58]. However,
ender and diet also have a clear effect on serum lipid concen-
rations, independent from the VDR knock-out. As such, the role
f VDR in the direct regulation of serum cholesterol seems to be
inimal.
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