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ence between the adult and aged groups in VDR KO mice, 
and between the young WT group and the young VDR KO 
group. Spiral ganglion cell loss was observed in the basal turn 
of adult VDR KO mice, a phenomenon infrequently found in 
WT mice. Expression of connexin 26, KCNJ10, and transient 
receptor potential channel vanilloid subfamily 4/6 was not 
affected by VDR KO-mediated hearing loss. Caspase 3 activa-
tion was detected in the spiral ganglion cell and its satellite 
cells, stria vascularis, spiral ligament fibrocytes, and the or-
gan of Corti in both genotypes. However, the percentage of 
positive cells and the staining intensity were lower in the VDR 
KO (compared to the WT) mice.  Conclusion:  These data sug-
gest that sensorineural hearing loss progressively developed 
at an earlier age in VDR KO mice. While the fundamental gene 
expressions in the cochlea were not influenced by VDR muta-
tion, it resulted in decrease of caspase 3 activation, which 
may be one of the factors underlying accelerating age-re-
lated hearing loss observed in VDR KO mice.  

Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 The active forms of vitamin D, 1,25-dihydroxyvita-
min D 3  [1,25(OH)2D 3 ] and 25-hydroxyvitamin D 3 , have 
several important biological roles including the regula-
tion of calcium homeostasis, cellular differentiation, in-
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 Abstract 

  Background:  Both hypo- and hypervitaminosis D can cause 
sensorineural hearing loss, and aural symptoms due to vita-
min D insufficiency are especially common during gravidity. 
Hormonal forms of vitamin D regulate transcription by bind-
ing with the high-affinity vitamin D receptor (VDR).  Objec-

tive:  To assess the effects of impaired vitamin D action in 
VDR knockout (KO) mice on hearing, cochlear morphology, 
and cochlear gene expression.  Materials and Methods:  
Eighteen young male and female mice (10 VDR KO and 8 wild 
type, WT,  ̂  6 months old), 33 adult male and female mice 
(16 VDR KO and 17 WT, between 7 and 14 months old), and 
11 aged male and female mice (5 VDR KO and 6 WT,  6 15 
months old) on 129S1 genetic background were studied. Au-
ditory thresholds were evaluated by auditory brain stem re-
sponse. Morphological changes were analyzed using plastic 
embedding and light microscopy. The expression of key 
genes (known to play a role in the regulation of cochlear 
function), and caspase 3 activity, were assessed using immu-
nofluorescent confocal microscopy.  Results:  There was a 
statistically significant difference between the young and 
the adult groups, and between the adult and aged groups 
of WT mice. There was also a statistically significant differ-
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hibition of tumor cell proliferation, immune function, 
and brain development [McGrath et al., 2004; Veenstra et 
al., 1998]. All these actions are at least partially mediated 
by activation of the vitamin D receptor (VDR), a member 
of the steroid/nuclear receptor superfamily of ligand-ac-
tivated transcription factors [Dusso et al., 2005; Holick, 
2004, 2006; Lou et al., 2004; Ylikomi et al., 2002]. Vita-
min D deficiency is a common factor in the reduction of 
bone-mineral density, and is associated with an increased 
risk of several chronic age-related diseases [Javaid et al., 
2006; Zittermann, 2003]. Vitamin D deficiency, VDR 
malfunction, hypoparathyroidism, and hypervitamin-
osis have long been suggested to be potential causes of 
sensorineural hearing loss [Brookes and Morrison, 1981; 
Brookes, 1983, 1985; Cohen et al., 1979; Ikeda et al., 1989, 
1987; Ishida et al., 2001; Ziporyn, 1983].

  Mutant mouse lacking functional VDR – VDR knock-
out (KO) mouse – is a powerful tool for exploring the vi-
tal functions of vitamin D. Nevertheless, VDR KO mice 
require a special diet for survival, a problem that has only 
recently been solved [Li et al., 1998]. The behavioral phe-
notype of VDR KO mice include muscular and motor 
impairments, swimming disturbances and increased 
anxiety, reported by our group [Kalueff et al., 2004, 
2006b] and further studied by others [Burne et al., 2006, 
2005].

  Our previous study also showed that a severe calcifica-
tion developed in VDR KO mice in the thalamus [Kalueff 
et al., 2006a] – the brain structure that projects to the in-
ferior colliculus of the auditory pathway and connects 
with the auditory cortex, as has recently been extensively 
investigated in both animals and humans [de la Mothe et 
al., 2006; Devlin et al., 2006; Pearson et al., 2007; Siga-
lovsky and Melcher, 2006; Takayanagi and Ojima, 2006]. 
Upon sustaining damage, neuronal retrograde degenera-
tion was observed in the auditory system, and auditory 
brain stem response (ABR) amplitude decreased after in-
ferior colliculus ablation [Kaga et al., 1999; Yamada et al., 
2000]. Vitamin D also plays a trophic role in differentia-
tion and maturation of neurons by promoting neurite 
outgrowth [Brown et al., 2003; Taniura et al., 2006]. Col-
lectively, this suggests that hearing physiology may be af-
fected in individuals with vitamin D/VDR dysfunc-
tions.

  In the present study, we analyzed hearing threshold 
levels and cochlear morphology to evaluate possible 
changes in the inner ear in VDR KO mice. In addition, 
gene expression and caspase 3 activation were also stud-
ied here. 

  Materials and Methods 

 Animals 
 Eighteen young male and female mice (10 VDR KO and 8 wild 

type, WT, ^6 months old), 33 adult male and female mice (16 
VDR KO and 17 WT, between 7 and 14 months old), and 11 aged 
male and female mice (5 VDR KO and 6 WT,  6 15 months old) 
were studied. VDR KO mice were initially generated at the Uni-
versity of Tokyo (Japan) [Yoshizawa et al., 1997]. All mice used 
were littermates on 129S1 genetic background produced by het-
erozygous crosses. 

  The VDR KO and WT mice used in the present study were 
maintained in a virus/parasite-free facility (temperature 24  8  
1   °   C, humidity 50  8  5%), and exposed to a 12-hour light, 12-hour 
dark cycle. Lights were turned off at 19:   00 and on at 7:   00. The 
animals were experimentally naive and housed individually in 
transparent plastic cages (13  !  12  !  14 cm), with food and water 
freely available. To eliminate hypocalcaemia and rickets in the 
VDR KO mice, all mutant animals were fed a special rescue diet 
containing 2% calcium, 1.25% phosphorus, and 20% lactose (Lac-
tamin AB, Sweden). The plasma Ca 2+  level was only slightly lower 
in the VDR KO group (2.11 + 0.26 m M ) than in the WT group (2.49 
+ 0.07 m M ), and was also slightly below the normal levels report-
ed previously for adult 129S1 mice (2.31–2.36 m M ). All animal 
experiments were approved by the Ethical Committee of the Uni-
versity of Tampere. Animal care and experimental procedures 
were conducted in accordance with the European legislation.

  Genotyping 
 On D21 postpartum, pups were weaned and tail clips were 

taken for genotyping performed using the polymerase chain reac-
tion method on DNA prepared from tail tissue. Four primers were 
used to amplify a 166-bp VDR band (forward, 5�-CTG CTC TTC 
TTA CAG GGA TGG-3�, and reverse, 5�-GAC TCA CCT GAA 
GAA ACC CTT G-3�) and a 400-bp Neo band (forward, 5�-ATC 
TTC TGT CAT CTC ACC TTG C-3�, and reverse, 5�-CAA GCT 
CTT CAG CAA TAT CAC G-3�) from the targeted allele. After 
being genotyped, mice were assigned to different cages based on 
their genotype. 

  ABR Measurement 
 To assess auditory thresholds, BioSig32 (Tucker Davis Tech-

nologies, USA) was used for ABR threshold recording in both 
VDR KO and WT mice under general anesthesia with Domitor 
(0.8 mg/kg medetomidine hydrochloride) and Ketalar (80  mg/kg 
ketemine hydrochloride).  A  click  duration  of  50  � s and a repeti-
tion rate of 21.1/s  were  used  for  stimulation.  Responses  from  512  

sweeps were averaged with a gain of 20 at each intensity level us-
ing a filter of 0.1–3 kHz. Thresholds were judged by visible repeat-
able responses. 

  Plasma Ca 2+  Level Measurement 
 Before cardioperfusion, blood was taken from the heart to 

measure plasma Ca 2+  level with atomic absorption spectroscopy 
(Yhtyneet Laboratoriot, Helsinki, Finland).

  Plastic Embedding 
 The animals were perfused with 4% paraformaldehyde and 1% 

glutaraldehyde in 0.1  M  PBS (pH 7.4) following cardiac perfusion 
removal of the blood with 0.01  M  PBS (pH 7.4) under general an-
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esthesia with pentobarbital sodium (100 mg/kg). The bulla was 
removed and further fixed with the same fixative solution over-
night. After washing with 0.1  M  PBS, decalcification with 10% 
EDTA was performed at room temperature for 3 weeks. Dehydra-
tion was carried out by using 35, 70, 90, and 95% ethanol for 10 
min each, and absolute ethanol twice for 15 min. After infiltrating 
with JB-4, samples were embedded at 4   °   C for 2 days. 2- � m sec-
tions were made with a microtone section machine (LEICA 
RM2265, Germany). The slides were stained with toluidine blue 
for light microscopy.

  Immunofluorescent Confocal Microscopy 
 The animals were perfused with 4% formaldehyde in 0.1  M  

PBS (pH 7.4) following cardiac perfusion removal of the blood 
with 0.01  M  PBS (pH 7.4). The bulla was removed and further fixed 
with the same fixative solution overnight. After washing with 0.1 
 M  PBS, decalcification with 10% EDTA was performed at room 
temperature for 3 weeks. A standard paraffin embedding proce-
dure was used and the samples were sectioned at 4- � m thickness. 
For immunofluorescent staining, the sections were heated at 
60   °   C for 2 h, deparaffinized with xylene, and passed through gra-
dient ethanol until a final PBS wash. The sections were digested 
with 0.1% trypsin at 37   °   C for 30 min, washed with PBS-T (0.1% 
Tween 20 was included) for 3  !  2 min, and incubated with 1:   20 
preimmunized goat serum at room temperature for 30 min. Dif-
ferent primary antibodies were used with incubation overnight at 
4   °   C: rabbit polyclonal antibody to VDR, 1:   10 (Abcam, UK, 
ab12129); mouse monoclonal antibody to synaptophysin, 1:   200 
(Sigma-Aldrich, USA); rabbit polyclonal antibody to connexin 26, 
1:   15 (Zymed, USA); rabbit polyclonal antibody to Kir4.1 (KCNJ10), 
1:   100 (Alomone Labs, Israel); rabbit polyclonal antibody to tran-
sient receptor potential channel vanilloid subfamily (TRPV) 4/6, 
1:   100 (Alomone Labs), and rabbit polyclonal antibody to caspase 
3 active, 1:   800 (R&D system, Inc., USA). For negative control, the 
primary antibodies were omitted in VDR, synaptophysin, con-
nexin 26, KCNJ10, TRPV6, and caspase 3 active. The primary 
antibody was saturated with 0.4 mg/ml TRPV4 peptide contain-
ing 1% preinoculated goat serum overnight in the negative control 
for TRPV4 staining. After washing with PBS-T, the slides were 
incubated with FITC-conjugated goat antiserum against rabbit 
IgG (1:   80, Sigma-Aldrich), Alexa Fluor �  568-labeled goat antise-
rum against rabbit IgG (1:   400, Invitrogen, USA) or TRITC-con-
jugated goat antiserum against mouse IgG (1:   200, Sigma-Aldrich, 
USA), which depended on the host primary antibody, at room 
temperature for 60 min, followed by incubation with 4�,6-diamid-
ino-2-phenylindole (DAPI; 10 ng/ml, Sigma-Aldrich, USA) for 10 
min. The slides were mounted with Gel Mount TM  Aqueous Mount-
ing Medium (Sigma-Aldrich, USA) after washing with PBS-T.

  Confocal Microscopy 
 The immunofluorescently stained slides were observed under 

an Olympus microscope IX70 installed with ANDOR IQ (FITC 
fluorescence at 488 nm with a laser beam; Alexa Fluor �  568 and 
TRITC fluorescence at 568 nm with a laser beam; DAPI with a 
340- to 380-nm filter). For caspase 3 activation quantification, the 
original confocal microscopy tiff images were evaluated with Im-
ageJ 1.36b software. The positive percentage was calculated on the 
basis of counting the caspase 3 activation and total nuclear DAPI 
staining.

  Statistics 
 Binomial test was used to compare the caspase 3 activation 

percentage between different groups. Student’s t test was applied 
to compare the average ABR thresholds, spiral ganglion cell count-
ing, and caspase 3 activation signal intensity between different 
groups. All data were presented as means  8  SE.

  Results 

 Hearing Loss in VDR KO Mice 
 An average threshold of 22  8  1, 29  8  2 and 73  8  3 

dB SPL was found in the young, adult and aged WT 
groups, respectively. There was a statistically significant 
difference between the young and adult WT groups (p  !  
0.05), and between the adult and aged WT groups (p  !  
0.01;  fig. 1 ). In contrast, an average threshold of 32  8  3, 
35  8  3, and 56  8  8 dB SPL was found in the young, adult 
and aged VDR KO groups, respectively. Although there 
was no statistically significant difference between the 
young and the adult VDR KO mouse groups, we found a 
statistically significant difference between the adult 
group and aged group in VDR KO mice (p  !  0.05;  fig. 1 ). 
In addition, there was also a statistically significant dif-
ference between the young WT and VDR KO groups 
(p  !  0.01), but not between the adult WT versus VDR KO, 
and aged WT versus VDR KO groups ( fig. 1 ). ABR wave-
forms in VDR KO mice with hearing loss were disfigured 
when compared with WT mice ( fig. 2 a, b).

  Cochlear Morphology 
 The cochlear structures including the organ of Corti, 

lateral wall, and spiral ganglion cells were fully developed 
in both WT ( fig. 3 a) and VDR KO mice ( fig. 3 b–d). The 
efferent nerve endings were detected using an antibody 
against synaptophysin underneath the inner hair cells and 
the outer hair cells ( fig. 3 c). An excessive layer of cells was 
found in the row of the outer hair cells in both VDR KO 
( fig. 3 e) and WT ( fig. 3 f) mice. This does not seem to be an 
artifact because the 2- � m thickness of the sections cannot 
cover the overlap of hair cells. Condensed nuclear staining 
with toluidine blue of spiral ganglion cells in both VDR 
KO ( fig. 3 g) and WT mice ( fig. 3 h) is a sign of degeneration 
[Kawamura et al., 1997]. The volume of these cells was also 
extremely reduced. Numerous spiral ganglion cell losses 
were seen in the basal turn of adult VDR KO mice, which 
was infrequently found in WT mice ( fig. 3 i). The spiral 
ganglion cells were counted and the VDR-KO mice had, 
on average, 9.8 cells/mm 2  (SD 3.6) and the WT mice had 
15.7 cells/mm 2  (SD 2.6). No statistically significant differ-
ences were found because of small sample size.
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  VDR Expression in the Cochlea 
 VDR was expressed in the nuclei of osteocytes of bul-

la, spiral ganglion cells, and Reissner’s membrane cells, 
in the cytoplasm of spiral ligament fibrocytes and stria 
vascularis cells, and in both nuclei of the hair cells and 

inner sulcus cells in WT mice ( fig. 4 ). VDR was not de-
tectable in VDR KO mouse cochlea. There was no signal 
for VDR in the negative control slice when the primary 
antibody was omitted.
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  Fig. 1.  VDR KO accelerated the develop-
ment of hearing loss shown by ABR. Age-
related ABR threshold elevation was found 
in both the WT and the VDR KO groups. 
Hearing loss developed significantly faster 
in the VDR KO group than in the WT 
group ^6 months. Mu = Mutant, VDR 
KO. The number of ears that were mea-
sured is shown in parentheses. 
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  Fig. 2.  Representative ABR waveforms from normal-hearing and 
abnormal-hearing mice. In the normal mouse with a threshold of 
25 dB SPL, every waveform was regular ( a ), while in the animal 
showing hearing loss with a threshold of 40 dB SPL, other peaks 
became irregular except for peak I ( b ). 
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  Fig. 3.  Comparison of cochlear morphology between VDR KO 
and WT 129S1 mice. The cochlear structures including the organ 
of Corti, lateral wall, and spiral ganglion cells are fully developed 
in both WT mice ( a ) and VDR KO mice ( b–d ).  c  The efferent 
nerve endings are proven by detecting synaptophysin underneath 
the inner hair cells and outer hair cells. An excessive layer of cells 
appears in the row of the outer hair cells in both VDR KO mice 
( e ) and WT mice ( f ). Degenerating spiral ganglion cells, which 
show condensed nuclear staining with toluidine blue and ex-
tremely reduced cellular volume, occurred in both VDR KO mice 
( g ) and WT mice ( h ). Spiral ganglion cell loss was found in the 

basal turn of VDR KO mice ( i ). ASGC = Axonal process of the 
spiral ganglion cells; DC = Dieters cells; DSGC = dendritic pro-
cess of spiral ganglion cells; ELC = excessive layer of cells; HC = 
Hensen’s cells; IHC = inner hair cells; ISC = inner sulcus cells;
OC = organ of Corti; OHC = outer hair cells; OSC = outer sulcus 
cells; RM = Reissner’s membrane; SGC-I = spiral ganglion cell 
type I; SGC-II = spiral ganglion cell type II; SL-I, SL-II, etc. = 
 spiral ligament fibrocyte type I, type II, etc.; SP = spiral promi-
nence; StrV = stria vascular; SwC = Schwann cells; Syn = synap-
tophysin. Scale bar = 100  � m ( a ,  b ,  d ,  f – i ), 6.9  � m ( c ), 10  � m ( e ). 
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  Normal Expression of Connexin 26 and KCNJ10 in
the Cochlea 
 Connexin 26 was weakly expressed in the Deiters’ cells 

and Hensen’s cells. Intense staining was found in the 
Claudius cells, inner sulcus cells, outer sulcus cells, type 
I spiral ligament fibrocytes, and the capillary of the stria 
vascularis, in both VDR KO and WT mice similarly 
( fig. 5 a, b). There was no signal for connexin 26 in the 
negative control slice without the primary antibody. In 
conclusion, GJB2 gene expression was normal in VDR 
KO mice.

  KCNJ10 expression was detected in the hair cells, sup-
porting cells, inner sulcus cells, intermediate cells of the 
stria vascularis, and spiral ganglion cells in both WT and 
VDR KO mice with immunofluorescent confocal micros-

copy ( fig. 5 c, d). No KCNJ10 signal was detected in the 
negative control slice with primary antibody omitted.

  Nonaffected TRPV4/6 Expression in the Cochlea 
 In the WT mouse cochlea, TRPV4 protein appeared 

in the cuticular plate of both inner and outer hair cells 
receiving the mechanic stimulation that comes from the 
hair bundle. Strong expression was also detected in the 
apical cytoplasm of both inner and outer pillar cells and 
their junction, inner sulcus cells, interdental cells, and in 
the matrix of the limbus, Reissner’s membrane, spiral 
prominence, strial vascularis, spiral ligament fibrocytes, 
and spiral ganglion cells. TRPV4 expression was not 
changed in the cochlea of VDR KO mice ( fig. 5 e, f). No 
signal was found on the slice when the primary antibody 
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  Fig. 4.  VDR was expressed in the WT mouse cochlea.  a  VDR pro-
tein staining (green) was found in the nuclei of both spiral gan-
glion cells and Schwann cells.  b  In the organ of Corti, VDR was 
expressed in the nuclei of hair cells, the basilar membrane, and in 
the cuticular plate. VDR was also found in the nuclei of inner sul-
cus cells ( c ), marginal cells and intermediate cells of the stria vas-
cularis ( d ), epithelium of spiral prominence, spiral ligament, and 
outer sulcus cells ( e ).  f  VDR was also expressed in the nuclei of 

osteocytes of bulla.  g  VDR was undetectable in VDR KO mouse 
cochlea.  h  There was no staining when primary antibody was 
omitted.  a ,  g ,  h  The nuclei were counterstained with DAPI. BM = 
Basilar membrane; CP = Cuticular plate; ESP = epithelium of spi-
ral prominence; IMC = intermediate cells of the stria vascularis; 
MC = marginal cells of the stria vascularis; SGC = spiral ganglion 
cells; SL = spiral ligament. Scale bar = 6.9  � m.                   



 VDR Knockout-Associated Hearing Loss  Audiol Neurotol 2008;13:219–230 225

was saturated with TRPV4 peptide. There was very faint 
and variable expression of TRPV6 in the mouse co-
chlea.

  Caspase 3 Is Activated in the Cochlea of Both WT
and VDR KO Mice 
 Caspase 3 activation was performed in the cochlea of 

6.5- and 10-month-old mice in both the WT and VDR 
KO groups. The activation was detected in cochlea cells, 

including the spiral ganglion cell and its satellite cells, 
stria vascularis, spiral ligament fibrocytes, and the organ 
of Corti ( fig. 6 ). However, as can be seen in  table 1 , the 
percentage of positive cells and the staining intensity 
were lower in VDR KO (compared to the WT) mice. The 
activated caspase 3 showed a cytosolic and nuclear local-
ization ( fig. 6 ).
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  Fig. 5.  The cochlear expression of connex-
in 26, KCNJ10, and TRPV4 was not affect-
ed by VDR KO. Connexin 26 protein was 
detected in Claudius cells in the organ of 
Corti ( a ), spiral ligament and capillary of 
the stria vascularis ( b ). KCNJ10 protein 
was expressed in Hensen’s cells and Diet-
ers cells in the organ of Corti ( c ), and mar-
ginal cells of the stria vascularis ( d ). TRPV4 
was found in the cuticular plate in the or-
gan of Corti ( e ), marginal cells and capil-
lary in the stria vascularis ( f ). Cap = Capil-
lary; CC = Claudius cells; HenC = Hensen’s 
cells. Scale bar = 6.9            � m.                   
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  Discussion 

 Most of the biological activities of 1 � ,25-dihydroxyvi-
tamin D 3  require VDR, which translocates from the cy-
toplasm to the nucleus after ligand binding and then het-
erodimerizes with the retinoid X receptor [Mangelsdorf 
and Evans, 1995]. Our finding of VDR expression in the 

mouse cochlea implies that vitamin D is potentially im-
portant in maintaining hearing, which is in agreement 
with the previous reports [Brookes and Morrison, 1981; 
Brookes, 1983, 1985; Ziporyn, 1983]. Although VDR pro-
tein was not detected in the VDR KO mouse cochlea, 
which is at odds with reports on a truncated form of VDR 
in the same strain of VDR KO mice [Bula et al., 2005], this 

a b

c d

e f

  Fig. 6.  Caspase 3 activation was decreased 
in the cochlea of VDR KO, compared to 
the WT mice. Caspase 3 activation (red) 
detected in both the cytosol and nucleus 
(blue) of neuron and satellite cells in the 
spiral ganglion of representative mice: a 
WT mouse at the age of 6.5 months ( a ), a 
VDR KO mouse at the age of 6.5 months 
( b ), a WT mouse at the age of 10 months 
( c ), and a VDR KO mouse at the age of 10 
months ( d ). Caspase 3 activation was also 
detected in the stria vascularis of WT mice 
at the age of 6.5 months ( e ) and VDR KO 
mice at the age of 10 months ( f ). Scale 
bar = 9.6            � m.                   
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can be explained by the difference in the epitope which 
was recognized by different antibodies. The antibody 
used in our study (Abcam, ab12129) was produced by in-
oculation with synthetic peptide corresponding to amino 
acids 5–19 of human VDR, whereas the antibody applied 
by Bula et al. [2005] was raised against a synthetic peptide 
mapping at the C-terminus of VDR of rat origin (Santa 
Cruz Biotechnology, sc-1008).

  Our ABR results suggest that disruption of vitamin D-
related bioactivity by partial deletion of the VDR gene 
accelerates age-related hearing loss. This auditory loss 
has been well documented in substrains of 129 mice 
[Ouagazzal et al., 2006; Zheng et al., 1999], and the find-
ing that both WT and VDR KO mice show age-related 
hearing loss is also in agreement with the literature. How-
ever, there was a significant difference in threshold be-
tween young WT mice and young VDR KO mice, while 
there was no statistically significant difference between 
adult WT and VDR KO mice or between aged WT and 
VDR KO mice, indicating that a more rapid progressive 
hearing loss in mice was exaggerated by VDR mutation. 
The fact that there was no statistically significant differ-
ence between young VDR KO mice and adult VDR KO 
mice supports our hypothesis that age-related hearing 
loss developed earlier in VDR KO mice than in WT mice 
(before 6 months). 

  VDR exerts the biological role through regulating cal-
cium and phosphate metabolism, and gene expression. 
The calcium and phosphate metabolism disorder can be 
compensated by feeding the animal a rescue diet, because 
the expression of Calbindin D 9K and plasma membrane 
calcium ATPase-1b (PMCA-1b) is VDR independent, 
whereas TRPV6 expression is VDR dependent [Bouillon 
et al., 2006; Song et al., 2003]. We were unable to restore 
the plasma calcium levels completely with the special 
diet, but the difference was rather small, which could also 

account for the hearing loss. Notably, TRPV6 expression 
in the brain is much higher than in the intestine, which 
may indicate that TRPV6 is a main player in brain calci-
um metabolism. Indeed, while TRPV6 decreased expres-
sion contributes to thalamic calcification [Nijenhuis et 
al., 2003] – a phenotype already reported in VDR KO 
mice [Kalueff et al., 2006a] – TRPV6 was not detected in 
the cochlea of either WT or VDR KO mice.

  Analyzing our ABR data in VDR KO mice, we note 
that the elevated threshold and irregular ABR waveforms 
(except for wave I) can be explained as a result of de-
creased or abnormal brain stem neurons, since the co-
chlea, including the spiral ganglion cells, is normally de-
veloped. Deafness represents the late stages of neuronal 
degeneration, including large scale spiral ganglion cell 
loss ( fig. 1 i). Although 129S mice bear the potential of 
presbycusis, VDR KO can accelerate the process of aging 
as a consequence of downregulation of glial-cell-line-de-
rived neurotrophic factor and nerve growth factor [Brown 
et al., 2003; Ohlemiller and Gagnon, 2004a, b; Ouagazzal 
et al., 2006; Taniura et al., 2006; Zhang et al., 2006; Zheng 
et al., 1999]. Thalamic calcification and degeneration 
may also induce brain stem lesions through the mecha-
nism of retrograde degeneration [Kaga et al., 1999; Yama-
da et al., 2000].

  Caspase 3 activation is also involved in age-related 
hearing loss and the mechanism of neuron degeneration 
may include both apoptosis and necrosis [Carloni et al., 
2007; Riva et al., 2007]. Our finding of extensive activa-
tion of caspase 3 in the cochlea of WT 129S1 mice is in 
line with these reports. Both cytosolic and nuclear local-
ization of cleaved caspase 3 protein in the cochlear cells 
indicates the role of caspase 3 activation in nuclear im-
pairment [Kamada et al., 2005]. Except for the destroying 
effect, caspase 3 is also essential for the normal develop-
ment of the auditory system [Morishita et al., 2001; Taka-

Table 1. Caspase 3 activation in the spiral ganglion of WT mice and VDR KO mice

Group Observed cells Positive cells Caspase 3 
activation, %

Intensity of caspase 3 
activation, AU

WT 6.5 months 157 65 41.40 1,538.45837.48
VDR KO 6.5 months 111 23 20.72 1,313.55812.44**
WT 10 months 189 80 42.33 1,212.83829.85
VDR KO 10 months 186 61 32.80 1,215.08812.80

** p < 0.001, statistically significant difference in caspase 3 activation intensity between VDR+/+ and
VDR–/– mice at the age of 6.5 months. AU = Arbitrary unit.
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