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bstract

F1 and F2 mouse hybrids derived from different parental strains are becoming a useful tool in behavioral research, underlining the importance
f their in-depth behavioral phenotyping. 129S1/SvImJ (S1), C57BL/6 (B6), NMRI (N) and BALB/c (BC) mice are commonly used in behavioral
euroscience, demonstrating marked behavioral differences. Here, we assess behavioral phenotypes of male mice of S1 and several hybrid strains
S1B6, S1N, S1BC) in a battery of behavioral tests, including the open field, novel odor exposure, novelty-induced grooming, horizontal rod (Suok)
nd the elevated plus maze tests. In addition, we assessed aggression and social barbering in these strains. Overall, the substantial differences

bserved here between these strains allow us to determine the influence of different genetic backgrounds on mouse behaviors, and more fully
nderstand how different strain-specific behaviors overlap in the F1 progeny. Our results imply complex interplay between parental genotypes in
nxiety, activity, grooming, aggression and barbering of their F1 progeny, further confirming the utility of F1 hybrids in behavioral neurogenetics.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The increased use of various mouse strains and geneti-
ally modified (transgenic or mutant) mice in the development
f animal behavioral models [6,16–18,39,52] underlines the
mportance of our understanding of how different genotypes
etermine various behaviors [1–3,5,14,40,41,49,50,55]. Multi-
le behavioral tests enables a high-throughput mouse behavioral
henotyping, including an in-depth assessment of animal activ-
ty, emotionality, cognitive, sensory, and neurological functions
7,13–15,19,20,24,26,28,38,44,45,54].

C57, 129, BALB and NMRI strains are currently widely used

n behavioral neuroscience research [2,3,12,14,34,40,49,58].

hile they differ markedly in activity and emotionality (e.g.
igh activity: C57, NMRI, BALB; high anxiety: 129, BALB)

∗ Corresponding author. Present address: Laboratory of Clinical Science,
uilding 10, Room 3D41, National Institute of Mental Health, 10 Center Dr.
SC 1264, Bethesda, MD 20892-1264, USA. Tel.: +1 301 594 0126;

ax: +1 301 402 0188.
E-mail addresses: avkalueff@inbox.ru, kalueva@mail.nih.gov

A.V. Kalueff).

f
b
u
s
i
m
g
i
r

166-4328/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.bbr.2006.11.005
/6 strains; Paternal genotype

25–27], there are many other behavioral differences reported
or these strains in the literature [1,22,42,45,47,56,57,59].

As hybrid mice derived from different parental genotypes
re an useful tool in behavioral research [4,10,29,30], the grow-
ng use of F1 and F2 hybrids [18,34,43,46,53] implies the
mportance of their further in-depth ethological investigation.
29S1/SvImJ (S1), C57B/6J (B6), BALB/cJ (BC) and NMRI
N) mouse sub-strains are commonly used in behavioral neu-
oscience [3,23,25–30,34,52]. Numerous recent studies have
erformed their detailed comparative phenotypical analyses
Table 1), enabling the assessment of the impact of parental
enotypes on the F1 behavioral domains.

The main aim of the present study was to examine how dif-
erent paternal genotypes (S1, B6, BC and N) influence specific
ehaviors of F1 mice. The same maternal genotype (S1) was
sed to minimize potential epigenetic influences, such as known
train differences in mothering styles [11,16,17]. The follow-
ng battery was used in this study: open field and elevated plus
aze (activity and anxiety tests [16,20,48]), novelty-induced
rooming test (anxiety and grooming test [25–27]), unfamil-
ar odor test (olfaction and anxiety test [9,27]), and horizontal
od Suok test (balancing and anxiety test [28]). Since mice

mailto:avkalueff@inbox.ru
mailto:kalueva@mail.nih.gov
dx.doi.org/10.1016/j.bbr.2006.11.005
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Table 1
A brief summary of main behavioral differences between 129S1 (S1), C57Bl/6
(B6), BALB/c (BC) and NMRI (N) mouse strains

Functions, parameters Strain ranking References

Sensory
Olfactory sensitivity BC > B6, S1 [31]
Progressive hearing loss S1, B6 [41]
Vestibular/motor

coordination
N, B6 > S1 > BC [15,28,32]

Anxiety
Freezing responses S1 � N, BC, B6 [24]*

Novel food/odor neophobia BC > B6, N, S1 [27,45]
Open field horizontal,

vertical activity
N > BC, B6 > S1 [5,27,34,41]

Defecations, urinations N, BC > S1, B6 [11,25,27,41]
Horizontal rod activity N > BC > B6 > S1 [28,32]
Stress-evoked

motorisensory deficits
S1, BC > N; BC > B6 [28,32]

Light–dark transitions N � BC > B6 > S1 [6,34]*

Time in light (aversive)
part

N � BC; B6 > S1 [6,34]*

Aggression
Inter-male aggression BC � S1, B6 > N [27,41]*

Barbering
Occurrence B6, N > S1 � BC [30,51]*

Overall severity N > B6 > S1 � BC

Grooming
Frequency in social

interaction
Very low: S1 [23]

Frequency in open field B6 > S1 ≈ N ≈ BC [25–27]
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Duration in open field BC > N > S1; B6 > S1 [25–27]

* Also own unpublished open field, light–dark box or homecage observations.

ften demonstrate marked strain differences in their aggression
16,41] and behavior-associated hair loss (barbering) [36,37,51],
hese behaviors were also assessed in the present study.

. Materials and methods

.1. Animals

Subjects were adult male S1 mice and F1 hybrid mice (S1BC, S1B6, S1N)
red and maintained in a virus/parasite-free facility (University of Tampere, Fin-
and) under conditions of controlled temperature (22 ± 2 ◦C), humidity (60%),
nd a 12-h light, 12-h dark cycle. Lights were turned off at 18.00 h and on at
.00 h. The animals (n = 7–8 in each group) were experimentally naı̈ve at the
eginning of the study, and housed 3–4 per cage, with food and water freely
vailable. Aggression and hair barbering phenotypes were assessed in a sepa-
ate group of adult male mice housed socially (6 cages, 3–4 mice per cage, n = 20
or each genotype) for 4 weeks.

.2. Behavioral testing and apparatus

Behavioral testing was always conducted between 14.00 and 18.00 h. On the
ay of the experiments, animals were transported to the dimly lit room and left
ndisturbed for 1 h prior to testing. In all tests, the animals were observed by
xperienced investigators (intra-rater reliability >0.9, established prior to testing)
naware of genotypes, except in the case of S1BC mice (where coat color was

ighter). The observers sat in front of (and 2 m away from) the testing boxes and
cored mouse behaviors using specially designed registers. Between sessions,
ach apparatus was cleaned with 70% ethanol and swept by paper towels.

On the first testing day, the olfactory abilities and neophobic responses were
ssessed in the novel odor test. Each mouse was placed individually in the actime-
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er box (30 cm × 30 cm × 30 cm) with 5–6 red ants (Formica rufa) immobilized
y a 1.5-cm scotch tape in the diagonally opposite corner. The latency (s) of find-
ng the odor (formic acid), and the number and the duration (s) of approaches
<2 cm) were measured for 3 min. The average duration of a single sniffing
pisode (total time spent sniffing divided by the number of approaches) was
lso calculated for all genotypes. We also assessed vertical activity (the number
f wall leanings, unsupported and total vertical rears) in this test, as additional
ndices of exploration.

One day later, the animals were exposed to the open field test (Plexiglas
0 cm × 50 cm × 50 cm box) divided into nine sectors by line drawing. Horizon-
al activity (sectors visited with four paws), defecation boli, urination episodes
nd vertical activity (wall leaning, unsupported vertical rears and total rears)
ere assessed in this test for 5 min.

Two days later, the mouse exploration and vestibular functions of mice
ere assessed on the horizontal rod Suok test, a 2-m aluminium bar 1.5 cm

n diameter (fixed to a platform elevated 30 cm from the floor and divided
nto 10-cm sectors by line marking) [28]. The mice were placed in the mid-
le of the bar (facing either end) and tested for 5 min. The latency (s) to leave
he central zone (a virtual 20-cm zone around the placement point; 4-paw cri-
erion), horizontal activity (sectors visited with 4 paws), the number of falls,
efecation boli and urination episodes were measured in this test, as described
reviously.

Three days later, we subjected the mice to the grooming test. To evoke
pontaneous novelty-induced grooming, the mice were placed individually in

clean unfamiliar glass cylinder (20 cm in diameter and 30 cm in height)
or 5 min. The latency to start grooming (s), the number and total duration
s) of bouts and the average bout duration (total duration divided by the
umber of bouts) were assessed in this test. In addition, we analyzed prelimi-
ary grooming episodes (grooming-like forepaw movements not touching the
ody) and total vertical rears (as a conventional behavioral measure of vertical
xploration).

The final test was the elevated plus maze, performed one week later. The maze
as made from Plexiglas and consisted of two open arms (30 cm × 10 cm) and

wo enclosed arms (30 cm × 10 cm × 10 cm) extending from a common central
egion (10 cm × 10 cm), elevated to a height of 60 cm. In this test, each mouse
as placed in the center of the apparatus, facing the open arm, and observed for
min. Conventional measures were the number of open-, closed-arm and total
rm entries (4-paw criterion), vertical rears and head dips (looks down) from
he open arms of the maze. In addition, the ratios of open:closed and open:total
rm entries were calculated for each mouse group in this test.

.3. Barbering and aggression analysis

Barbering phenotypes were assessed in adult male mice housed socially (3–4
nimals per cage). Hair loss was recorded by an experienced observer. Each
ouse was visually inspected on both the dorsal and ventral surfaces for at least
min. Hair loss was scored as barbering if the hair lesion was non-puritic, there
as no scarring or scabbing around the lesion, and the animal was otherwise

n good health and the fur (where present) was in good conditions [21]. For
ach genotype, we analyzed the number (%) of cages in which the barbering
ccurred, and the percentages of barbers and barbered animals (of total animals
f each genotype). Barber animals were identified as the single intact mouse in
he cage [30].

Inter-male aggression was assessed by recording % of animals with scars on
he hind limbs, base of the tail and rear flanks [21] in the groups used to assess
arbering. Each mouse was assessed individually for 2–4 min by the same expe-
ienced observer. All experimental procedures were conducted in accordance
ith the European legislation (86/609/EEC) and the guidelines of the National

nstitutes of Health. All animal experiments reported here were approved by the
thical Committee of the Medical School of the University of Tampere.

.4. Statistical analysis
All results are expressed as means ± S.E.M. To evaluate differences between
enotypes, analysis of variance (one-way ANOVA; factor: genotype) was per-
ormed followed by the post hoc Tukey’s test. A probability of less than 0.05
as considered statistically significant in all tests.
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. Results

Table 2 summarizes data obtained in these mice in a battery of
ehavioral tests. Overall, all four groups have unimpaired olfac-
ory function, as assessed in the novel odor exposure test. The

ice demonstrated similar latencies to find odor, the duration
f sniffing and the number of approaches (Table 2), but showed
ignificant genotype differences in grooming frequency and the
verage duration of a single contact. The S1BC mice spent sig-
ificantly less time contacting the odor (compared to the S1N
ice). In addition, there was a significant genotype effects on

nsupported vertical rears (S1BC � S1, S1N), with a similar
but not-significant) trend for the total number of rears but not
all leanings in this test.
Data on the mouse open field and Suok test behaviors are
ummarized in Table 2. Overall, there were significant geno-
ype differences in the number of open filed wall leanings
S1N > S1B6), unsupported rears (S1BC > S1N; S1 > S1N) and
efecation boli (S1BC > S1, S1B6). In contrast, horizontal,

e
s
t
o

able 2
ehavioral performance of 129S1 (S1) and F1 hybrid strains S1-BALB/c (S1BC), S

ests (n = 7–8 in each group)

est and behaviors S1BC S1N

ovel odor test
Wall leaning 11 ± 2.1 13 ± 1.4
Vertical rears 13 ± 4.8 ab 2.2 ± 0.9 a
Total vertical rears 24 ± 6.2 15 ± 1.9
Latency to approach (s) 35 ± 5.4 31 ± 5.7
Number of approaches 6 ± 0.6 5 ± 0.8
Duration of investigation (s) 8 ± 1.0 14 ± 1.6
Single contact duration (s) 1.4 ± 0.1 a 3 ± 0.3 a

pen field test
Horizontal activity 76 ± 3.9 79 ± 7.3
Wall leaning 17 ± 3.1 28 ± 4.4 a
Vertical rears 27 ± 6.3 ab 6 ± 1.5 a
Total vertical activity 44 ± 8.5 34 ± 5.3
Defecation boli 5 ± 1.1 ab 3.1 ± 0.9
Urination 0.4 ± 0.3 0 ± 0

uok test
Horizontal activity 75 ± 22.2 21 ± 14.0
Latency to leave center (s) 96 ± 51.1 197 ± 53.0
Falls from the rod 0.3 ± 0.3 0.6 ± 0.2

rooming test
Latency to start (s) 59 ± 15.2 77 ± 21.2
Grooming bouts 5 ± 0.3 4 ± 0.8
Grooming duration (s) 16 ± 1.9 15 ± 3.0
Average bout duration (s) 3.5 ± 0.4 4 ± 0.4
Pre-grooming episodes 3 ± 1.3 abc 0 ± 0 a
Total vertical rears 30 ± 2.4 abc 13 ± 2.0 a

levated plus maze
Open arm entries 1.5 ± 0.5 2.7 ± 1.0
Closed arm entries 8 ± 1.7 11 ± 1.5 a
Total arm entries 9.5 ± 2.0 13.7 ± 2.0 a
Open:closed entries ratio 0.67 ± 0.06 ab 0.24 ± 0.1 b
Open:total entries ratio 0.16 ± 0.05 0.19 ± 0.07
Vertical rears 17 ± 2.0 22 ± 3.3 a
Head dips 12 ± 2.0 19 ± 3.3

ata are expressed as mean ± S.E.M.; F values are given for significant ANOVA dat
oc test for significant ANOVA data).
in Research 177 (2007) 45–50 47

otal vertical activity and urination scores did not differ sig-
ificantly across the genotypes. In the Suok test, there was
similar (but non-significant) tendency to altered horizontal

ctivity (S1BC > S1, S1N, S1B6), whereas the latency to leave
he center and the number of falls were unaltered in all four
enotypes.

In the novelty-induced grooming test (Table 2), there were
ignificant genotype differences in the number and duration of
outs (S1 > S1B6), vertical activity (S1BC � S1B6, S1N, S1)
nd the occurrence of pre-grooming episodes (seen only in
1BC). There were no significant genotype differences in the

atency to start grooming and the average duration of a single
out in this test.

In the elevated plus maze, there were no strain effects for
ome anxiety-related measures (open arm entries, open:total

ntries ratio and head dips, Table 2), although mice demon-
trated significant genotype differences for the number of closed,
otal arm entries and vertical rears (S1N > S1B6), as well as for
pen:closed entries ratio (S1BC > S1N, S1B6).

1-NMRI (S1N) and S1-C57Bl/6J (S1B6) subjected to a battery of behavioral

S1B6 S1 F(3,29) P

12 ± 1.5 7 ± 1.2 NS
4 ± 1.8 2 ± 1.0b 3.87 0.025

16 ± 3.3 9 ± 2.2 NS
62 ± 26.0 41 ± 6.1 NS
5 ± 1.2 5 ± 1.1 NS

15 ± 3.2 12 ± 2.9 NS
2.3 ± 0.5 2.3 ± 0.3 3.56 0.033

63 ± 6.9 84 ± 10.6 NS
12 ± 1.3 a 22 ± 4.4 3.70 0.025
11 ± 2.5 18 ± 3.3 b 5.13 0.007
23 ± 3.2 40 ± 6.9 NS
0.6 ± 0.2 a 1.7 ± 0.8 b 5.20 0.006

0 ± 0 0.1 ± 0.1 NS

14 ± 8.5 26 ± 17.9 NS
210 ± 54.1 244 ± 40.6 NS
0.4 ± 0.3 0.7 ± 0.3 NS

66 ± 27.0 48 ± 14.7 NS
3 ± 0.4 a 5.5 ± 0.8 a 3.18 0.041

10 ± 1.5 a 22 ± 2.4 a 4.26 0.014
4 ± 0.5 4.5 ± 0.5 NS
0 ± 0 b 0 ± 0 c 4.83 0.0083

12 ± 1.4 b 14 ± 2.1 c 16.95 0.0001

0.9 ± 0.5 2.0 ± 1.2 NS
5 ± 0.6 a 6 ± 1.4 3.40 0.033

5.9 ± 0.9 a 8 ± 2.5 2.29 0.036
0.15 ± 0.10 a 0.33 ± 0.20 3.21 0.039
0.18 ± 0.08 0.25 ± 0.15 NS

9 ± 1.6 a 11 ± 3.8 4.79 0.009
8 ± 2.0 13 ± 3.3 NS

a. Strain scores sharing common letters are statistically different (Tukey’s post
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Table 3
Aggression and barbering profiles in 129S1 (S1) and F1 hybrid strains S1-BALB/c (S1BC), S1-NMRI (S1N) and S1-C57Bl/6J (S1B6)

Behaviors S1BC S1N S1B6 S1 F(3,23) P

Barbering activity
% Cages with barbering 0 ± 0 ab 100 ± 0 a 83 ± 17 b 50 ± 22 10.04 <0.0003
% Barbered animals 0 ± 0 abc 70 ± 0 a 75 ± 10 b 85 ± 8 c 36.78 <0.0001
% Barbers 0 ± 0 ab 30 ± 0 abc 25 ± 10 b 15 ± 8 c 48.40 <0.00001

Aggressiveness
% Cages with scarring 100 ± 0 a 0 ± 0 a 67 ± 21 50 ± 22 7.52 <0.0015
% Animals with scars 100 ± 0 ab 0 ± 0 acd 45 ± 11 bc 40 ± 11 bcd 27.93 <0.00001
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ata are expressed as mean ± S.E.M. for six cages (n = 20) for each genotype. S
NOVA data).

Finally, as can be seen in Table 3, there were marked geno-
ype differences in barbering and aggressive behaviors, with S1N
howing the highest barbering activity and the lowest aggres-
ion. In most cases, barbering targeted whiskers, face, head and
ody, and in all cages with barbering there was a single domi-
ant animal whose fur and whiskers remained fully intact (data
ot shown). In a striking contrast, the S1BC mice displayed the
ighest aggression but no barbering activity.

. Discussion

Performing comparative behavioral analyses of S1, S1BC,
1B6 and S1N mice, we first noted that these genotypes display
enerally unaltered open field horizontal activity (Table 2), dif-
ering from the reported ranking of their parental strain (Table 1).
his suggests that activity levels in F1 mice may be deter-
ined by both parental strains, and that “inactive” S1 maternal

enotype (due to floor effect) may contribute to reduced F1 dif-
erences in horizontal exploration of novel arenas. In contrast
o horizontal activity, the mouse open field vertical activity dif-
ered across the F1 genotypes (Table 2), and was consistently
igher in the S1BC (rears) and S1N (wall leanings) groups. Par-
lleling these data, vertical activity differed across strains in the
levated plus maze, with S1BC and S1N mice again showing
ore vertical rears than did S1 and S1B6 mice (Table 2). Collec-

ively, these data suggest that horizontal and vertical exploration
epresents two distinct behavioral domains, differentially (and
ndependently) controlled by paternal genotypes.

As all four parental genotypes have been reported to possess
ifferent baseline levels of anxiety (BC, S1 � B6, N; Table 1), it
as possible to expect that behavioral phenotypes of F1 hybrids

n the present study would resemble parental anxiety pheno-
ypes (S1BC, S1 � S1B6, S1N). However, our results do not
upport this hypothesis, since the genotype ranking for anxi-
ty was S1B6, S1 � S1N, S1BC, as assessed by altered vertical
xploration in the open field (Table 2). The elevated plus maze
est produced similar results, with S1BC genotype showing less
nxiety in some measures (higher open:closed entries ratio),
nd S1N mice showing more vertical exploration. The num-

er of closed and total arm entries (reflecting both exploration
nd activity domains) also tended to differ across the genotypes
S1N > S1B6, S1). Taken together, these data support the notion
hat anxiety is a behavioral trait with complex polygenic nature

N
m
e
t

sharing common letters differ statistically (Tukey’s post hoc test for significant

n F1 mice, and not a mere combination of “anxiety” and “activ-
ty” profiles of the respective parental strains (see similar results
n [56] showing close behavioral profiles in F1 129S2-B6 and
nxious inactive 129S2 mice).

Interestingly, grooming activity was higher in S1 than S1B6
nd other F1 mice (Table 1), generally inconsistent with the
train ranking previously reported for their parental genotypes:
C, N, B6 � S1 [25,27]. This suggests that grooming may rep-

esent a behavioral domain sensitive to both activity and anxiety
evels, and that F1 mouse grooming is the result of a complex
nterplay between these domains. Specific “preliminary” groom-
ng, previously reported for BC mice [27], was also observed the
1BC group (Table 2). This observation suggests strong influ-
nces of the BC genotype on this behavior, and represents an
xample of how some rare behaviors (specific for the parental
trains) can be inherited in F1 strains.

Although all four genotypes differed markedly in their
ggressiveness (S1BC � S1, S1B6 > S1N; Table 3), we noted
hat their ranking coincides with that of the paternal strains, pre-
iously reported in the literature (Table 1). Likewise, there were
obust genotype differences in the mouse barbering behavior
S1N, S1B6 > S1 � S1BC; Table 3), generally consistent with
arlier reports on barbering phenotypes of their parental strains,
ncluding active barbering in B6 and N, and absent barbering in
C mice [30,51]. Taken together, these observations support the

dea that strain aggression negatively correlates with barbering
ctivity [30] (Tables 1 and 3), and that BC and N paternal geno-
ypes strongly (although reciprocally) regulate both domains in
heir F1 progeny.

Another potentially important factor to consider here is sen-
orimotor abilities, as their disturbances are known to influence
ouse behaviors [13,16]. All strains tested here (Table 2) have

nimpaired olfaction, as assessed in the novel odor exposure
est, and there were no differences in the Suok test balancing,
mplying relatively normal vestibular functions and motor coor-
ination in all these mice. Collectively, these results indicate
hat sensorimotor deficits are unlikely to contribute to behavioral
ifferences reported here.

Analysing defecation data in this study, we noted that BC and

parental strains are “high defecators”, compared to B6 and S1
ice (Table 1). Negating simplistic views of defecation as an

motionality index, this measure appears to represent a complex
rait which may (BC mice) or may not (N mice) reflect the strain
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nxiety. In our study, we observed predictably high open field
efecation activity in S1BC and S1N groups, and low defecation
evels in S1 and S1B6 mice. The ethological interpretation of this

easure is rather complex, and may involve several interplaying
actors (such as emotionality- and genotype-related defecation
ctivity). In contrast, urination scores did not differ significantly
n our study, suggesting a relative weakness of this index in
ehavioral phenotyping of F1 mice.

In general, there were several limitations of the present study.
iven the rich literature on behavioral profiles of parental strains

onsistently reported in various studies (Table 1), they were not
ncluded in this study. However, in the future experiments it

ay be interesting to compare both parental strains and their
1 progeny, also studying F1 mice produced by crosses with
aternal strains beyond S1. Second, in order to obtain more

nformation on the genetic contribution of the parental strains,
urther cross-breeding experiments (e.g. a diallel cross [18])
ay be necessary. Collectively, this may help unravel further

he underlying genetics of quantitative behavioral traits in these
nimals. Future experiments focusing on these and other F1
omains (e.g. depression-related, cognitive, parental, social, and
exual behaviors) are needed, also using other paradigms, dif-
erent types of stressors, and test batteries.

Moreover, as this study was performed in male mice, and
iven known gender-specific strain differences in mouse behav-
ors [56], it will be interesting to assess behaviors of female
1 hybrid mice, also focusing on potential sex-linked traits.
or example, it is possible that behavioral genetics and pat-

erns of barbering or aggression in female F1 mice will differ
rom that of F1 males used here. It is also possible that some
train-specific behaviors (e.g. aggression in S1BC mice) and
heir interaction with environmental factors (e.g. social hous-
ng and laboratory environment [33]) may indirectly influence
ther domains assessed here, such as anxiety and activity. From
his point of view, F1 mice may be a useful tool to assess both
ene–gene and gene–environment interactions. Likewise, the
ole of epigenetic factors (such as maternal behavior [8]) merits
n-depth studies in F1 mice, using other maternal strains and
ross-fostering.

In conclusion, our study shows a substantial domain- and
train-specific contribution of paternal genotypes on behaviors
f their F1 progeny. Several behaviors traits (e.g. aggression and
arbering) were strongly influenced by paternal backgrounds in
ur F1 mice, whereas some other F1 behaviors (such as activity,
nxiety, and grooming) appeared to be the result of a com-
lex interplay between both parental genotypes (rather than a
ere combination of their behavioral profiles). Overall, these

esults show complex interactions between parental genotypes
nd between different domains in F1 hybrid mouse behavior,
urther confirming the utility of F1 mice as a rich source of
nformation [35,46] on behavioral genetics.
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