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Vitamin D is becoming increasingly recognized as a

nontraditional drug target for different brain pathologies.

Although widely known for their role in calcium

metabolism, vitamin D and its receptor have been linked

to several brain disorders, including cognitive decline,

epilepsy, affective disorders, and schizophrenia. Here we

discuss mounting evidence, and parallel recent clinical

and animal behavioral, genetic and pharmacological

data to emphasize the emerging role of the neurosteroid

vitamin D system in brain function. Behavioural
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Introduction
Vitamin D has traditionally been known for its role in

calcium and bone homeostasis, cell proliferation, and

modulation of parathyroid hormone secretion (Cranney

et al., 2007; Aloia et al., 2010). Mounting evidence indi-

cates that vitamin D and its receptors play an important

role in the brain, from neuroprotection to immunomodu-

lation (Garcion et al., 2002; Kalueff et al., 2006d; Kalueff

and Tuohimaa, 2007; McCann and Ames, 2008). Vitamin

D also maintains a robust antiproliferative activity, thereby

making it an important regulator of brain cell proliferation

and differentiation (Eyles et al., 2003; Ko et al., 2004), and

implicating it in brain development (Banerjee and

Chatterjee, 2003). With the large part of the global popu-

lation still suffering from vitamin D deficiency (DVD)

(Gloth et al., 1999; Berk et al., 2007; Barnard and

Colon-Emeric, 2010; Lips, 2010), it is now time to

discuss the role of this hormone in brain functioning and

behavioral regulation (also see Ref. McCann and Ames

(2008) for a recent comprehensive review).

Vitamin D is produced by the skin upon ultraviolet light

exposure. It is a lipid-soluble secosteroid hormone, which

is biologically inert by itself. Vitamin D is metabolized in

the liver to produce 25-hydroxyvitamin D (25-D), which

is the major circulating form of this hormone. 25-D

is further oxidized in the kidneys and brain to produce

1,25-D (Garcion et al., 2002; Kalueff et al., 2006d; Kalueff

and Tuohimaa, 2007). Ultimately, 25-D and 1,25-D are

oxidized in the kidneys (and other tissues) to form the

inactive metabolites of 24,25-D and 1,24,25-trihydroxy-

vitamin D. The enzyme responsible for the catabolism,

vitamin D-24-hydroxylase, is downregulated by high

levels of calcium and phosphate and upregulated by

1,25-D, thereby playing an important role in maintaining

the physiological concentrations of 1,25-D (Armbrecht

et al., 1998; Hamamoto et al., 2006; Kalueff et al., 2006d).

As the endocrine vitamin D system is tightly linked to

calcium and parathyroid hormone, the autocrine and

paracrine systems are controlled by 25-D concentration

(Reichel and Norman, 1989; St-Arnaud, 2008). Further-

more, the widespread distribution of 1a-hydroxylase (the

enzyme that produces 1,25-D) and the nuclear vitamin D

receptor (VDR) in both neurons and glial cells suggests

that vitamin D may have autocrine and paracrine proper-

ties in the brain (Eyles et al., 2005).

1,25-D binds to the VDR, which acts as a typical trans-

cription factor and regulates gene expression (Ogunkolade

et al., 2006). VDR is highly expressed in the animal

(Stumpf and O’Brien, 1987; Prufer et al., 1999) and human

(Eyles et al., 2005) brain. Upon binding, VDR undergoes

a conformational change to form a complex with a retinoid

X receptor. This complex controls gene expression by

binding to the DNA elements in the promoter regions of

the target genes – vitamin D response elements (Arbelle

et al., 1996; Thompson et al., 1998).

There are five important common polymorphisms within

the VDR gene region that are likely to exert functional

effects: Cdx2, FokI, BsmI, ApaI, and TaqI (Chen et al., 2009).

For example, Cdx2 polymorphism in the promoter region

of the VDR gene is important for proper vitamin D/VDR

signaling (Fang et al., 2003). Several single nucleotide

polymorphisms of the promoter region of the VDR gene,

420 Review article

0955-8810 �c 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins DOI: 10.1097/FBP.0b013e32833c850f

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



such as 1521 (G/C) and 1012 (A/G), modulate the

formation of the protein–DNA complex, thereby regulat-

ing the circulating levels of 25-D (D’Alesio et al., 2005).

Among several hundreds of genes activated by 1,25-D

(Kalueff et al., 2006d), the CYP27B1 gene coding 1a-

hydroxylase is of particular interest (Cannell, 2008;

Currenti, 2010). On account of the unique pharmacoki-

netics of vitamin D, variations of CYP27B1 interact with

differing levels of environmentally determined 25-D.

This results in neural concentrations that are under gene-

tic organization, but that vary widely with human behavior.

That is, although vitamin D operates under genetic organi-

zation, these variations may fail to fully signal the genetic

expression encoding neural proteins regulated by vitamin

D (Cannell, 2008). Polymorphisms in the CYP27B1 gene

are important in vitamin D metabolism, implicating this

gene in a variety of pathologies (Lopez et al., 2004; Bailey

et al., 2007; Dong et al., 2009).

The generation of VDR-deficient mice (Yoshizawa et al.,
1997) has emphasized the role of vitamin D as an impor-

tant neurosteroid hormone. In 2004, our laboratory was

the first to report neurobehavioral abnormalities in VDR

mutant mice (Kalueff et al., 2004, also see subsequent

phenotypical findings in Burne et al., 2005; Kalueff et al.,
2005b, 2006a, 2006b, 2006c). VDR null mice fail to

thrive, developing alopecia, hypocalcemia, infertility, and

severely impaired bone formation, and ultimately die

within 15 weeks after birth (Yoshizawa et al., 1997). How-

ever, when supplemented with a high calcium diet, they

survive, although the lack of functional VDR leads to a

variety of neurobehavioral phenotypes, including increased

anxiety, reduced social behavior, abnormal grooming, pup

cannibalism, impaired nest building, and neophobia

(Kalueff et al., 2004, 2005a, 2006b; Minasyan et al., 2007).

These mice also display abnormal motor phenotypes,

increased proneness to epilepsy, impaired vestibular

functions, prolactin dysregulation (Kalueff et al., 2006c,

2006d; Keisala et al., 2007, 2009), and abnormally high

brain angiotensin II, resulting in increased water intake

(Kong et al., 2008).

Recently, the developmental DVD model has emerged as

a useful approach to the mechanisms underlying vitamin

D-related brain pathologies. Rodents deprived of suffi-

cient vitamin D during embryogenesis later express altered

gene expressions for maintenance (MAP2, NF-L), neuro-

transmission (GABA-Aa4), and cell cycle control (GADD45)

in the brain (Feron et al., 2005; Eyles et al., 2007, 2009).

They also have altered brain morphology and reduced levels

of nerve growth factor expression in adulthood (Eyles

et al., 2003, 2009; Feron et al., 2005). DVD causes dysregu-

lation of multiple brain proteins involved in different

biological pathways including oxidative phosphorylation,

redox balance, cytoskeleton maintenance, calcium home-

ostasis, chaperoning, post-translational modifications, sy-

naptic plasticity, and neurotransmission in the prefrontal

cortex and hippocampus (Almeras et al., 2007). Protein

expression is also altered in the nucleus accumbens,

affecting proteins involved in calcium binding (calbindin

1 and 2, hippocalcin and calreticulin) and mitochondrial

function (McGrath et al., 2008). Finally, with its expansive

roles in the brain, the vitamin D neuroendocrine system

seems to be involved in various neurobehavioral disorders

(Carswell, 1997; Kalueff et al., 2006d), several of which

will be discussed here.

Although this article aims to serve as an encompassing

summary of the most current neurobehavioral research,

several pathologies have been purposely excluded here.

For example, the role of vitamin D and VDR in multiple

sclerosis is widely accepted in the literature (Hayes et al.,
1997; Cantorna, 2006, 2008; Smolders et al., 2009). As our

review focuses on the behavioral aspects of the vitamin

D/VDR neuroendocrine system, its well-known role in

the pathogenesis of multiple sclerosis is not addressed

here (however, see Refs. Cantorna, 2008; Smolders et al.,
2009) for recent reviews on this topic).

Brain aging
Brain aging is triggered by genomic instability, neuroen-

docrine dysfunctions, oxidative stress, altered calcium

metabolism, and neuroinflammation (Lee et al., 2000;

Tuohimaa et al., 2009). VDR and vitamin D have a

regulatory effect on all these phenomena, rendering

vitamin D a candidate for longevity regulation (Tuohimaa

et al., 2009). For example, cacitriol has also been shown to

induce the expression of GADD45a, a protein involved

with DNA repair and global genome stability, indicating

that vitamin D may have genoprotective action (Akutsu

et al., 2001; Galbiati et al., 2003). Notably, VDR mutant

mice display symptoms of premature physiological and

brain aging, such as wrinkling of the skin, hair and weight

loss, muscle atrophy (Keisala et al., 2009), progressive

hearing loss (Tuohimaa, 2009), thalamic calcification

(Kalueff et al., 2006a), and age-dependent motor and

vestibular abnormalities (Minasyan et al., 2009).

Cognitive deficits are the key phenotype of brain aging

(Grady and Craik, 2000; Drag and Bieliauskas, 2010). The

importance of vitamin D in preserving cognitive function

in aging adults is receiving the growing support in clinical

literature (Przybelski and Binkley, 2007; Bjorkman et al.,
2008; Buell et al., 2009; Lee et al., 2009; Wilkins et al.,
2009; Barnard and Colon-Emeric, 2010). With VDR heavily

expressed in the cortex and hippocampus, this steroid

hormone has a significant influence on cognition, such as

episodic memory (Annweiler et al., 2009). Mechanisms that

may underlie how vitamin D affects cognition (Kuningas

et al., 2009) include downregulation of L-type voltage-

sensitive calcium channels in hippocampal neurons, which

reduces the influx and excitotoxic effects of calcium

(Brewer et al., 2001) known to impair cognitive function-

ing (Veng et al., 2003). However, although VDR poly-

morphisms have been linked to impaired cognition, none
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of them is associated with calcium levels (Kuningas et al.,
2009). Other suggested mechanisms for the beneficial

role of vitamin D in cognition include the possibility that

it may increase acetylcholine concentration or neurotro-

phin synthesis (Przybelski and Binkley, 2007).

DVD is also associated with impaired cognitive perfor-

mance (Wilkins et al., 2006; Wilkins et al., 2009) including

dementia (Buell et al., 2010). Interestingly, the incidence

of osteoporosis seems to be higher in patients with

Alzheimer’s disease than in nondemented individuals

(Tysiewicz-Dudek et al., 2008), whereas the high

prevalence of DVD is associated with Alzheimer’s disease

(Sato et al., 1998). Altogether, these data indicate that the

vitamin D neuroendocrine system emerges as an im-

portant factor in preserving brain aging (Lee et al., 2009).

Epilepsy
Maternal vitamin D insufficiency is rather common, often

leading to DVD and hypocalcemia in newborns. Re-

searchers have long considered there to be a correlation

between neonatal hypocalcemic seizures and correspond-

ing vitamin D levels (Camadoo et al., 2007). Thus, with an

emerging link between seizures and vitamin D, there is

a growing interest in its possible involvement in epilepsy.

Several studies have shown a link between vitamin D

dysfunction and epilepsy (Ali et al., 2004; Kalueff et al.,
2005b, 2006c), confirming an association between low

vitamin D levels and seizures (Janjoppi et al., 2008).

Siegel et al. (1984) were the first to show the effect of

vitamin D against epilepsy in a rodent model, showing

that vitamin D delivered to the hippocampus lowers the

threshold for chemically induced seizures. However, it

took more than two decades before further strides were

made. Recently, our group has linked VDR function to

epilepsy by showing an increased susceptibility to

pentylenenetrazole-induced seizures in VDR knockout

mice (Kalueff et al., 2006c). In line with this, 1,25-D

indices rapid antiseizure effects in wild-type mice (Kalueff

et al., 2005b), whereas pilocarpine-induced seizures

elevated VDR mRNA expression (Janjoppi et al., 2008).

Collectively, these findings confirm that the vitamin D/

VDR endocrine system may play an important role in the

regulation of seizures, and may represent a potential drug

target to treat this disorder.

Schizophrenia
The observation that humans born in the winter and

spring, and those living at higher latitudes, have an

increased risk of developing schizophrenia initially implied

the role of hypovitaminosis D (Torrey and Miller, 1997;

McGrath, 1999; Davies et al., 2003; Saha et al., 2006). The

possibility that low prenatal vitamin D could be a risk

factor for psychosis was proposed more than a decade

ago (McGrath, 1999), as vitamin D supplementation in

the first year of life significantly reduces the risk of

schizophrenia (McGrath et al., 2004). Although the

possibility of genetic variation in the determination of

the pathogenesis of schizophrenia has also been exam-

ined, genetic polymorphisms in VDR have not emerged

as a contributing factor to the susceptibility for schizo-

phrenia (Yan et al., 2005; Handoko et al., 2006). A recent

study of a multigenerational family with a mutated VDR

also failed to establish the link between VDR mutation

and psychotic phenotypes (Ozer et al., 2004).

Vitamin D-deficient animals have been developed to

model this link by mimicking the features associated with

schizophrenia (McGrath, 1999). For example, transient

prenatal DVD in female rats causes morphological, cellular,

and molecular changes in the brain, which alters behavior

and nerve growth factor expression in their offspring

(Grecksch et al., 2009). Newborn rats exposed to prenatal

DVD also show altered brain morphology (such as

enlarged lateral ventricles and cortical thinning) and

evidence of increased cell proliferation in the brain tissue

(Eyles et al., 2003). The ventriculomegaly, characteristic

of the DVD model, strikingly parallels increased ventricle

volume observed in patients with schizophrenia (Kesby

et al., 2006). As adults, these rats show significantly im-

paired latent inhibition and reduced habituation, and

spontaneous hyperlocomotion (Becker et al., 2005; Kesby

et al., 2006). DVD has also been shown to impair learning in

mice (De Abreu et al., 2010). Furthermore, hypovitaminosis

D affects several proteins, reported to be disrupted in the

postmortem brain tissue from patients with schizophrenia,

such as malic enzyme 2 and mitogen-activated protein

kinase 1 (McGrath et al., 2008). Importantly, the DVD

model is associated with the dysregulation of numerous

calcium-binding proteins (calbindin 1 and 2, hippocalcin

and calreticulin) (Lewis and Hashimoto, 2007; McGrath

et al., 2008). For example, calmodulin has been found to

be underexpressed in the hippocampus of adult rats born

to vitamin D-deficient mothers (Almeras et al., 2007).

Calcium-binding proteins modulate a wide range of key

cellular functions, and aberrant calcium buffering, speci-

fically in the nucleus accumbens, may lead to the disrup-

tion of adaptive and goal-directed behaviors, consistent

with the symptoms of schizophrenia (McGrath et al., 2008).

In line with the DVD model, the absence of vitamin D

during development alters the way dopaminergic neurons

develop (Eyles et al., 2010). Recent rat studies confirmed

that vitamin D targets dopaminergic systems and increases

the dopamine transporter density and affinity in the cau-

date putamen and nucleus accumbens (Kesby et al.,
2010). Other studies have shown the modulation of MK

801-induced hyperlocomotion by haloperidol (Kesby et al.,
2006) and amphetamine (Kesby et al., 2010) in DVD rats.

Amelioration of DVD-induced reduction in neurogenesis

by haloperidol (Keilhoff et al., 2010) further supports the

link between vitamin D and schizophrenia-like states.

Overall, the role of vitamin D in schizophrenia continues

to be supported by a growing amount of behavioral,

genetic, and pharmacological evidence.
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Affective disorders
The role of vitamin D in depression, originally proposed

almost a decade ago (Lansdowne and Provost, 1998), has

recently received strong support in the largest study to

date (Hoogendijk et al., 2008; also see Gloth et al., 1999;

Feldman et al., 2004; Berk et al., 2007; Bertone-Johnson,

2009; Barnard and Colon-Emeric, 2010 for details). The

role of vitamin D in depression was supported by several

recent studies indicating that supplemental vitamin D

reduces depressive symptoms (Jorde et al., 2008;

Shipowick et al., 2009), with levels of 25-D found to be

significantly lower in patients with minor or major

depression (Hoogendijk et al., 2008; Arvold et al., 2009).

The effectiveness of light therapy (that normalizes

vitamin D levels: Sato et al., 2003) in alleviating

depression is also in line with these findings (Manber

et al., 2002; Shirani and St Louis, 2009; Deligiannidis and

Freeman, 2010). The variants in the VDR gene have

recently been established as possible contributors to

susceptibility to age-related changes in cognitive func-

tioning and depressive symptoms (Kuningas et al., 2009).

Furthermore, although not directly examining the link, a

recent study reported a high number of individuals with

bipolar or unipolar depression in a multigenerational

family with a mutated VDR gene (Ozer et al., 2004).

The role of vitamin D in depression is further corrobo-

rated by microarray data showing vitamin D response

elements in the promoter regions of serotonin receptors

and tryptophan hydroxylase, both of which are strongly

associated with depression (Wang et al., 2005; Fernandes

de Abreu et al., 2009). A recent study screening thalamic

transcriptome found an association between VDR expres-

sion and bipolar depression (Chu et al., 2009), offering yet

further evidence to support the role of the vitamin D/VDR

neuroendocrine system in clinical depression.

Unlike human data, vitamin D has not been directly

linked to depression in animal models. For example, VDR

mutant mice do not exhibit the baseline depressive-like

symptoms, but do show significant anxiety-like behavior

(Kalueff et al., 2004, 2006b; Minasyan et al., 2007), including

decreased exploratory behavior and stress-induced groom-

ing (Kalueff et al., 2004). The idea that VDR is involved

in anxiety has been further confirmed by Kas’ group,

implicating the VDR gene in neophobia in mice (De

Mooij-van Malsen et al., 2009). The quantitative trait

locus found in this study and associated with mouse

avoidance behavior contains VDR gene regions, and is

homologous to the human locus linked to affective patho-

genesis (Segurado et al., 2003; De Mooij-van Malsen et al.,
2009). Finally, a correlation has also been noted between

DVD and anxiety in humans (Armstrong et al., 2007),

collectively supporting the role of vitamin D in affective

disorders.

Brain calcification is a common consequence of dysregulated

calcium metabolism, and may be triggered by hypocalcemia

and hypovitaminosis D. Calcification of the basal ganglia,

such as Fahr’s syndrome, is known to produce neurolo-

gical and psychological phenotypes, including movement

disorders, seizures, dementia, psychoses, and mood dis-

orders (Senoglu et al., 2007; Brunoni et al., 2009). Associ-

ated with genetic defects in VDR, vitamin D-resistant

rickets type II has recently been reported to lead to basal

ganglia calcification in humans, associated with depres-

sion, mental retardation, and aggression (Brunoni et al.,
2009). Our earlier studies with VDR mutant mice

(Kalueff et al., 2006a) showed a strikingly similar pheno-

type, with progressive thalamic calcification in these

mutants. Altogether, this raises the possibility that various

neuropsychiatric symptoms associated with vitamin D/

VDR deficiency may be linked to benign brain calcifica-

tion. Importantly, such calcification can be easily detected

by brain imaging methods and corrected by vitamin

D/calcium supplementation.

Conclusion
The recognition of vitamin D and VDR as novel drug

targets in the brain continues to be supported by a growing

amount of clinical and experimental data. The under-

standing of the mechanisms and role played by vitamin D

in neurobiology and behavior is crucial in developing

innovative therapeutic approaches for treating a variety of

brain pathologies. Although vitamin D supplementation

as a therapy has long been associated with a clear benefit

in preventing numerous brain pathologies, especially when

administered during pregnancy, one of the major pro-

blems is its toxicity because of hypercalcemia (Carswell,

1997). Therefore, the development of novel drugs with

low-calcemic analogs, and those with synthetic vitamin D

ligands with tissue-specific uptake, may provide the

needed progression in therapeutics (Kalueff et al., 2006d).

Finally, there is increasing genomic and genetic evi-

dence, briefly summarized here, suggesting the important

role of brain genes in the vitamin D action. Therefore, new

therapeutic strategies may include both traditional phar-

macological and gene therapy approaches to the vitamin

D/VDR neuroendocrine system.
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